Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 318, Pages 51–65
DOI: https://doi.org/10.4213/tm4277
(Mi tm4277)
 

Any Suspension and Any Homology Sphere Are $2H$-Spaces

D. V. Gugnin

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991 Russia
References:
Abstract: We prove that the reduced suspension $X = \Sigma Y$ over any finite or countable connected polyhedron $Y$ can be endowed with a two-valued multiplication $\mu \colon X\times X \to \mathrm {Sym}^2 X$ satisfying the unit axiom: $\mu (e,x) = \mu (x,e) = [x,x]$ for all $x\in X$. If $X$ is a sphere $S^m$, $m = 1,3,7$, this is a classical result; for $X=S^2$, this is V. M. Buchstaber's theorem of 1990; and for $X=S^{2k+1}$, $k\ne 0,1,3$, this is our theorem of 2019. We also prove a similar statement for all $X$ that are smoothable homology spheres of arbitrary dimension and for $X=\mathbb R\mathrm P^m$, $m\ge 2$. The proof of one of the main results uses the following statement, which is of independent interest. Let $X$ and $Y$ be connected finite CW complexes and $f\colon X\to Y$ a continuous map inducing an isomorphism in integral homology. Then, for any $n\ge 2$, the map $\mathrm {Sym}^n f\colon \mathrm {Sym}^n X \to \mathrm {Sym}^n\kern 1pt Y$ also induces an isomorphism in integral homology.
Keywords: symmetric powers, $nH$-spaces, homology spheres.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00675
This work was supported by the Russian Foundation for Basic Research, project no. 20-01-00675.
Received: April 25, 2022
Revised: May 24, 2022
Accepted: May 31, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 318, Pages 45–58
DOI: https://doi.org/10.1134/S0081543822040058
Bibliographic databases:
Document Type: Article
UDC: 515.145
Language: Russian
Citation: D. V. Gugnin, “Any Suspension and Any Homology Sphere Are $2H$-Spaces”, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Collected papers, Trudy Mat. Inst. Steklova, 318, Steklov Math. Inst., Moscow, 2022, 51–65; Proc. Steklov Inst. Math., 318 (2022), 45–58
Citation in format AMSBIB
\Bibitem{Gug22}
\by D.~V.~Gugnin
\paper Any Suspension and Any Homology Sphere Are $2H$-Spaces
\inbook Toric Topology, Group Actions, Geometry, and Combinatorics. Part~2
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 318
\pages 51--65
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4277}
\crossref{https://doi.org/10.4213/tm4277}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538835}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 318
\pages 45--58
\crossref{https://doi.org/10.1134/S0081543822040058}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85142233740}
Linking options:
  • https://www.mathnet.ru/eng/tm4277
  • https://doi.org/10.4213/tm4277
  • https://www.mathnet.ru/eng/tm/v318/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024