Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 318, Pages 73–98
DOI: https://doi.org/10.4213/tm4275
(Mi tm4275)
 

This article is cited in 1 scientific paper (total in 1 paper)

Delone Sets and Tilings: Local Approach

N. P. Dolbilin, M. I. Shtogrin

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (322 kB) Citations (1)
References:
Abstract: We present new results in the local theory of Delone sets, regular systems, and isogonal tilings. In particular, we prove a local criterion for isogonal tilings of the Euclidean space. This criterion is then applied to the study of $2R$-isometric Delone sets, where $R$ is the covering radius for these sets. For regular systems in the plane we establish the exact value $\widehat {\rho }_2=4R$ of the regularity radius. We prove that in any cell of the Delone tiling in an arbitrary Delone set in the plane, there is a vertex at which the local group is crystallographic. Hence, the subset of points with local crystallographic groups in a Delone set in the plane is itself a Delone set with covering radius at most $2R$.
Funding agency Grant number
Russian Science Foundation 20-11-19998
The work of the first author (Section 2 and Subsections 1–3 and 5 in Section 5) was supported by the Russian Science Foundation under grant no. 20-11-19998, https://rscf.ru/project/20-11-19998/.
Received: April 1, 2022
Revised: May 16, 2022
Accepted: May 18, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 318, Pages 65–89
DOI: https://doi.org/10.1134/S0081543822040071
Bibliographic databases:
Document Type: Article
UDC: 514.1+514.87
Language: Russian
Citation: N. P. Dolbilin, M. I. Shtogrin, “Delone Sets and Tilings: Local Approach”, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Collected papers, Trudy Mat. Inst. Steklova, 318, Steklov Math. Inst., Moscow, 2022, 73–98; Proc. Steklov Inst. Math., 318 (2022), 65–89
Citation in format AMSBIB
\Bibitem{DolSht22}
\by N.~P.~Dolbilin, M.~I.~Shtogrin
\paper Delone Sets and Tilings: Local Approach
\inbook Toric Topology, Group Actions, Geometry, and Combinatorics. Part~2
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 318
\pages 73--98
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4275}
\crossref{https://doi.org/10.4213/tm4275}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 318
\pages 65--89
\crossref{https://doi.org/10.1134/S0081543822040071}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85142201085}
Linking options:
  • https://www.mathnet.ru/eng/tm4275
  • https://doi.org/10.4213/tm4275
  • https://www.mathnet.ru/eng/tm/v318/p73
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :46
    References:35
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024