Abstract:
Let $m(G)$ be the infimum of the volumes of all open subgroups of a unimodular locally compact group $G$. Suppose integrable functions $\phi _1,\phi _2: G\to [0,1]$ satisfy $\|\phi _1\|\leq \|\phi _2\|$ and $\|\phi _1\| + \|\phi _2\| \leq m(G)$, where $\|\cdot \|$ denotes the $L^1$-norm with respect to a Haar measure $dg$ on $G$. We have the following inequality for any convex function $f: [0,\|\phi _1\|]\to \mathbb R $ with $f(0) = 0$: $\int _{G} f \circ (\phi _1 * \phi _2)(g)\,dg \leq 2 \int _{0}^{\|\phi _1\|} f(y)\,dy + (\|\phi _2\| - \|\phi _1\|) f(\|\phi _1\|)$. As a corollary, we have a slightly stronger version of the Brunn–Minkowski–Kemperman inequality. That is, we have $\mathrm {vol}_*(B_1 B_2) \geq \mathrm {vol}(\{g\in G \mid 1_{B_1} * 1_{B_2}(g) > 0\}) \geq \mathrm {vol}(B_1) + \mathrm {vol}(B_2)$ for any non-null measurable sets $B_1,B_2 \subset G$ with $\mathrm {vol}(B_1) + \mathrm {vol}(B_2) \leq m(G)$, where $\mathrm {vol}_*$ denotes the inner measure and $1_B$ the characteristic function of $B$.
This work was supported by the JSPS KAKENHI Grant no. JP19J22628 and by the Leading Graduate Course for Frontiers of Mathematical Sciences and Physics (FMSP).
Citation:
Takashi Satomi, “An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn–Minkowski–Kemperman Inequality”, Approximation Theory, Functional Analysis, and Applications, Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin, Trudy Mat. Inst. Steklova, 319, Steklov Math. Inst., Moscow, 2022, 280–297; Proc. Steklov Inst. Math., 319 (2022), 265–282
\Bibitem{Sat22}
\by Takashi~Satomi
\paper An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn--Minkowski--Kemperman Inequality
\inbook Approximation Theory, Functional Analysis, and Applications
\bookinfo Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 319
\pages 280--297
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4268}
\crossref{https://doi.org/10.4213/tm4268}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563397}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 319
\pages 265--282
\crossref{https://doi.org/10.1134/S0081543822050182}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85148534332}
Linking options:
https://www.mathnet.ru/eng/tm4268
https://doi.org/10.4213/tm4268
https://www.mathnet.ru/eng/tm/v319/p280
This publication is cited in the following 2 articles: