Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 319, Pages 280–297
DOI: https://doi.org/10.4213/tm4268
(Mi tm4268)
 

This article is cited in 2 scientific papers (total in 2 papers)

An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn–Minkowski–Kemperman Inequality

Takashi Satomi

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku, Tokyo 153-8914, Japan
Full-text PDF (277 kB) Citations (2)
References:
Abstract: Let $m(G)$ be the infimum of the volumes of all open subgroups of a unimodular locally compact group $G$. Suppose integrable functions $\phi _1,\phi _2: G\to [0,1]$ satisfy $\|\phi _1\|\leq \|\phi _2\|$ and $\|\phi _1\| + \|\phi _2\| \leq m(G)$, where $\|\cdot \|$ denotes the $L^1$-norm with respect to a Haar measure $dg$ on $G$. We have the following inequality for any convex function $f: [0,\|\phi _1\|]\to \mathbb R $ with $f(0) = 0$: $\int _{G} f \circ (\phi _1 * \phi _2)(g)\,dg \leq 2 \int _{0}^{\|\phi _1\|} f(y)\,dy + (\|\phi _2\| - \|\phi _1\|) f(\|\phi _1\|)$. As a corollary, we have a slightly stronger version of the Brunn–Minkowski–Kemperman inequality. That is, we have $\mathrm {vol}_*(B_1 B_2) \geq \mathrm {vol}(\{g\in G \mid 1_{B_1} * 1_{B_2}(g) > 0\}) \geq \mathrm {vol}(B_1) + \mathrm {vol}(B_2)$ for any non-null measurable sets $B_1,B_2 \subset G$ with $\mathrm {vol}(B_1) + \mathrm {vol}(B_2) \leq m(G)$, where $\mathrm {vol}_*$ denotes the inner measure and $1_B$ the characteristic function of $B$.
Keywords: convolution, convexity, locally compact group, combinatorial inequality, geometric measure theory.
Funding agency Grant number
Japan Society for the Promotion of Science JP19J22628
Leading Graduate Course for Frontiers of Mathematical Sciences and Physics (FMSP)
This work was supported by the JSPS KAKENHI Grant no. JP19J22628 and by the Leading Graduate Course for Frontiers of Mathematical Sciences and Physics (FMSP).
Received: March 19, 2022
Revised: May 28, 2022
Accepted: May 31, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 319, Pages 265–282
DOI: https://doi.org/10.1134/S0081543822050182
Bibliographic databases:
Document Type: Article
UDC: 517.986.6
Language: Russian
Citation: Takashi Satomi, “An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn–Minkowski–Kemperman Inequality”, Approximation Theory, Functional Analysis, and Applications, Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin, Trudy Mat. Inst. Steklova, 319, Steklov Math. Inst., Moscow, 2022, 280–297; Proc. Steklov Inst. Math., 319 (2022), 265–282
Citation in format AMSBIB
\Bibitem{Sat22}
\by Takashi~Satomi
\paper An Inequality for the Compositions of Convex Functions with Convolutions and an Alternative Proof of the Brunn--Minkowski--Kemperman Inequality
\inbook Approximation Theory, Functional Analysis, and Applications
\bookinfo Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 319
\pages 280--297
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4268}
\crossref{https://doi.org/10.4213/tm4268}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563397}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 319
\pages 265--282
\crossref{https://doi.org/10.1134/S0081543822050182}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85148534332}
Linking options:
  • https://www.mathnet.ru/eng/tm4268
  • https://doi.org/10.4213/tm4268
  • https://www.mathnet.ru/eng/tm/v319/p280
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:166
    Full-text PDF :21
    References:34
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024