Abstract:
Let $H$ be a Hilbert space. We investigate the properties of weak limit points of iterates of random projections onto $K\geq 2$ closed convex sets in $H$ and the parallel properties of weak limit points of the residuals of random greedy approximation with respect to $K$ dictionaries. In the case of convex sets these properties imply weak convergence in all the cases known so far. In particular, we give a short proof of the theorem of Amemiya and Ando on weak convergence when the convex sets are subspaces. The question of weak convergence in general remains open.
Citation:
Petr A. Borodin, Eva Kopecká, “Weak Limits of Consecutive Projections and of Greedy Steps”, Approximation Theory, Functional Analysis, and Applications, Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin, Trudy Mat. Inst. Steklova, 319, Steklov Math. Inst., Moscow, 2022, 64–72; Proc. Steklov Inst. Math., 319 (2022), 56–63