Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 319, Pages 64–72
DOI: https://doi.org/10.4213/tm4264
(Mi tm4264)
 

This article is cited in 1 scientific paper (total in 1 paper)

Weak Limits of Consecutive Projections and of Greedy Steps

Petr A. Borodinab, Eva Kopeckábc

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991 Russia
b Moscow Center of Fundamental and Applied Mathematics, Moscow, 119991 Russia
c Department of Mathematics, University of Innsbruck, A-6020 Innsbruck, Austria
Full-text PDF (199 kB) Citations (1)
References:
Abstract: Let $H$ be a Hilbert space. We investigate the properties of weak limit points of iterates of random projections onto $K\geq 2$ closed convex sets in $H$ and the parallel properties of weak limit points of the residuals of random greedy approximation with respect to $K$ dictionaries. In the case of convex sets these properties imply weak convergence in all the cases known so far. In particular, we give a short proof of the theorem of Amemiya and Ando on weak convergence when the convex sets are subspaces. The question of weak convergence in general remains open.
Keywords: projections, greedy approximations, convex set, dictionary, Hilbert space.
Funding agency Grant number
Russian Science Foundation 22-21-00415
The work of the first author is supported by the Russian Science Foundation under grant no. 22-21-00415, https://rscf.ru/project/22-21-00415/.
Received: October 30, 2021
Revised: February 24, 2022
Accepted: March 16, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 319, Pages 56–63
DOI: https://doi.org/10.1134/S0081543822050054
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: Petr A. Borodin, Eva Kopecká, “Weak Limits of Consecutive Projections and of Greedy Steps”, Approximation Theory, Functional Analysis, and Applications, Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin, Trudy Mat. Inst. Steklova, 319, Steklov Math. Inst., Moscow, 2022, 64–72; Proc. Steklov Inst. Math., 319 (2022), 56–63
Citation in format AMSBIB
\Bibitem{BorKop22}
\by Petr~A.~Borodin, Eva~Kopeck\'a
\paper Weak Limits of Consecutive Projections and of Greedy Steps
\inbook Approximation Theory, Functional Analysis, and Applications
\bookinfo Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 319
\pages 64--72
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4264}
\crossref{https://doi.org/10.4213/tm4264}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 319
\pages 56--63
\crossref{https://doi.org/10.1134/S0081543822050054}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85148433103}
Linking options:
  • https://www.mathnet.ru/eng/tm4264
  • https://doi.org/10.4213/tm4264
  • https://www.mathnet.ru/eng/tm/v319/p64
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:398
    Full-text PDF :38
    References:33
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024