Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2003, Volume 243, Pages 138–160 (Mi tm426)  

This article is cited in 5 scientific papers (total in 5 papers)

A Method of Composite Grids on a Prism with an Arbitrary Polygonal Base

E. A. Volkov

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (289 kB) Citations (5)
References:
Abstract: The Dirichlet problem for the Laplace equation on a right prism with an arbitrary polygonal base is considered. A method of composite cubic and cylindrical grids is developed that allows one to obtain an approximate solution to this problem. Under certain conditions imposed on the smoothness of boundary values, the uniform convergence with the rate $O(h^2\ln h^{-1})$ is established for a difference solution on a composite grid with the total number of nodes $O(h^{-3}\ln h^{-1})$, where $h$ is the step of a cubic grid.
Received in May 2003
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. A. Volkov, “A Method of Composite Grids on a Prism with an Arbitrary Polygonal Base”, Function spaces, approximations, and differential equations, Collected papers. Dedicated to the 70th birthday of Oleg Vladimirovich Besov, corresponding member of RAS, Trudy Mat. Inst. Steklova, 243, Nauka, MAIK «Nauka/Inteperiodika», M., 2003, 138–160; Proc. Steklov Inst. Math., 243 (2003), 131–153
Citation in format AMSBIB
\Bibitem{Vol03}
\by E.~A.~Volkov
\paper A~Method of Composite Grids on a~Prism with an Arbitrary Polygonal Base
\inbook Function spaces, approximations, and differential equations
\bookinfo Collected papers. Dedicated to the 70th birthday of Oleg Vladimirovich Besov, corresponding member of RAS
\serial Trudy Mat. Inst. Steklova
\yr 2003
\vol 243
\pages 138--160
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm426}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2049468}
\zmath{https://zbmath.org/?q=an:1074.65121}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2003
\vol 243
\pages 131--153
Linking options:
  • https://www.mathnet.ru/eng/tm426
  • https://www.mathnet.ru/eng/tm/v243/p138
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:361
    Full-text PDF :96
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024