Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 319, Pages 29–50
DOI: https://doi.org/10.4213/tm4253
(Mi tm4253)
 

On the Sum of a Trigonometric Sine Series with Monotone Coefficients

A. S. Belov

Ivanovo State University, ul. Ermaka 39, Ivanovo, 153025 Russia
References:
Abstract: We prove that for each positive integer $n$ the conjugate Dirichlet kernel $\widetilde {D}_n(x)=\sum _{k=1}^{n}\sin (kx)$ is semiadditive on the interval $[0,2\pi ]$, that is, $\widetilde {D}_n(x_1) + \widetilde {D}_n(x_2) \ge \widetilde {D}_n(x_1 + x_2)$ for any nonnegative real numbers $x_1$ and $x_2$ such that $x_1 + x_2\le 2\pi $; moreover, for positive $x_1$ and $x_2$ with $x_1 + x_2 < 2\pi $, the equality is attained if and only if the condition $\widetilde {D}_n(x_1) = \widetilde {D}_n(x_2) = \widetilde {D}_n(x_1 + x_2) = 0$ is satisfied. We use this property of the conjugate Dirichlet kernel to study the sum of a sine series with monotone coefficients. We also examine the properties of some nonnegative trigonometric polynomials.
Keywords: conjugate Dirichlet kernel, semiadditive functions, nonnegative trigonometric polynomials.
Received: October 24, 2021
Revised: December 19, 2021
Accepted: January 11, 2022
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 319, Pages 22–42
DOI: https://doi.org/10.1134/S0081543822050030
Bibliographic databases:
Document Type: Article
UDC: 517.518.4
Language: Russian
Citation: A. S. Belov, “On the Sum of a Trigonometric Sine Series with Monotone Coefficients”, Approximation Theory, Functional Analysis, and Applications, Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin, Trudy Mat. Inst. Steklova, 319, Steklov Math. Inst., Moscow, 2022, 29–50; Proc. Steklov Inst. Math., 319 (2022), 22–42
Citation in format AMSBIB
\Bibitem{Bel22}
\by A.~S.~Belov
\paper On the Sum of a Trigonometric Sine Series with Monotone Coefficients
\inbook Approximation Theory, Functional Analysis, and Applications
\bookinfo Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 319
\pages 29--50
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4253}
\crossref{https://doi.org/10.4213/tm4253}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 319
\pages 22--42
\crossref{https://doi.org/10.1134/S0081543822050030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85148423344}
Linking options:
  • https://www.mathnet.ru/eng/tm4253
  • https://doi.org/10.4213/tm4253
  • https://www.mathnet.ru/eng/tm/v319/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:240
    Full-text PDF :24
    References:30
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024