Abstract:
We prove that for each positive integer $n$ the conjugate Dirichlet kernel $\widetilde {D}_n(x)=\sum _{k=1}^{n}\sin (kx)$ is semiadditive on the interval $[0,2\pi ]$, that is, $\widetilde {D}_n(x_1) + \widetilde {D}_n(x_2) \ge \widetilde {D}_n(x_1 + x_2)$ for any nonnegative real numbers $x_1$ and $x_2$ such that $x_1 + x_2\le 2\pi $; moreover, for positive $x_1$ and $x_2$ with $x_1 + x_2 < 2\pi $, the equality is attained if and only if the condition $\widetilde {D}_n(x_1) = \widetilde {D}_n(x_2) = \widetilde {D}_n(x_1 + x_2) = 0$ is satisfied. We use this property of the conjugate Dirichlet kernel to study the sum of a sine series with monotone coefficients. We also examine the properties of some nonnegative trigonometric polynomials.
Citation:
A. S. Belov, “On the Sum of a Trigonometric Sine Series with Monotone Coefficients”, Approximation Theory, Functional Analysis, and Applications, Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin, Trudy Mat. Inst. Steklova, 319, Steklov Math. Inst., Moscow, 2022, 29–50; Proc. Steklov Inst. Math., 319 (2022), 22–42
\Bibitem{Bel22}
\by A.~S.~Belov
\paper On the Sum of a Trigonometric Sine Series with Monotone Coefficients
\inbook Approximation Theory, Functional Analysis, and Applications
\bookinfo Collected papers. On the occasion of the 70th birthday of Academician Boris Sergeevich Kashin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 319
\pages 29--50
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4253}
\crossref{https://doi.org/10.4213/tm4253}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 319
\pages 22--42
\crossref{https://doi.org/10.1134/S0081543822050030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85148423344}