Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 316, Pages 64–78
DOI: https://doi.org/10.4213/tm4248
(Mi tm4248)
 

This article is cited in 2 scientific papers (total in 2 papers)

Structure of the Population of Particles for a Branching Random Walk in a Homogeneous Environment

D. M. Balashova, E. B. Yarovaya

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119991 Russia
Full-text PDF (245 kB) Citations (2)
References:
Abstract: We consider a symmetric branching random walk in a multi-dimensional lattice with continuous time and Markov branching process at each lattice point. It is assumed that initially at each lattice point there is one particle and in the process of branching any particle can produce an arbitrary number of descendants. For a critical process, under the assumption that the walk is transient, we prove the convergence of the distribution of the particle field to the limit stationary distribution. We show the absence of intermittency in the zone $|x-y| = O(\sqrt {t})$, where $x$ and $y$ are spatial coordinates and $t$ is the time, under the assumption of superexponentially light tails of a random walk and a supercriticality of the branching process at the points of the lattice.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00487
This work is supported by the Russian Foundation for Basic Research, project no. 20-01-00487.
Received: May 13, 2021
Revised: July 13, 2021
Accepted: November 12, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 316, Pages 57–71
DOI: https://doi.org/10.1134/S0081543822010060
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: D. M. Balashova, E. B. Yarovaya, “Structure of the Population of Particles for a Branching Random Walk in a Homogeneous Environment”, Branching Processes and Related Topics, Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin, Trudy Mat. Inst. Steklova, 316, Steklov Math. Inst., Moscow, 2022, 64–78; Proc. Steklov Inst. Math., 316 (2022), 57–71
Citation in format AMSBIB
\Bibitem{BalYar22}
\by D.~M.~Balashova, E.~B.~Yarovaya
\paper Structure of the Population of Particles for a Branching Random Walk in a Homogeneous Environment
\inbook Branching Processes and Related Topics
\bookinfo Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 316
\pages 64--78
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4248}
\crossref{https://doi.org/10.4213/tm4248}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 316
\pages 57--71
\crossref{https://doi.org/10.1134/S0081543822010060}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129317129}
Linking options:
  • https://www.mathnet.ru/eng/tm4248
  • https://doi.org/10.4213/tm4248
  • https://www.mathnet.ru/eng/tm/v316/p64
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:243
    Full-text PDF :35
    References:65
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024