Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 315, Pages 34–63
DOI: https://doi.org/10.4213/tm4247
(Mi tm4247)
 

This article is cited in 2 scientific papers (total in 2 papers)

Refined Euler–Lagrange Inclusion for an Optimal Control Problem with Discontinuous Integrand

S. M. Aseevab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University
Full-text PDF (361 kB) Citations (2)
References:
Abstract: We study a free-time optimal control problem for a differential inclusion with mixed-type functional in which the integral term contains the characteristic function of a given open set of “undesirable” states of the system. The statement of this problem can be viewed as a weakening of the statement of the classical optimal control problem with state constraints. Using the approximation method, we obtain first-order necessary optimality conditions in the form of the refined Euler–Lagrange inclusion. We also present sufficient conditions for their nondegeneracy and pointwise nontriviality and give an illustrative example.
Keywords: optimal control, differential inclusion, Pontryagin's maximum principle, refined Euler–Lagrange inclusion, state constraint, discontinuous integrand, risk zone.
Funding agency Grant number
Russian Science Foundation 19-11-00223
This work is supported by the Russian Science Foundation under grant 19-11-00223.
Received: August 30, 2021
Revised: September 26, 2021
Accepted: October 1, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 315, Pages 27–55
DOI: https://doi.org/10.1134/S0081543821050047
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: S. M. Aseev, “Refined Euler–Lagrange Inclusion for an Optimal Control Problem with Discontinuous Integrand”, Optimal Control and Differential Games, Collected papers, Trudy Mat. Inst. Steklova, 315, Steklov Math. Inst., Moscow, 2021, 34–63; Proc. Steklov Inst. Math., 315 (2021), 27–55
Citation in format AMSBIB
\Bibitem{Ase21}
\by S.~M.~Aseev
\paper Refined Euler--Lagrange Inclusion for an Optimal Control Problem with Discontinuous Integrand
\inbook Optimal Control and Differential Games
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 315
\pages 34--63
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4247}
\crossref{https://doi.org/10.4213/tm4247}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 315
\pages 27--55
\crossref{https://doi.org/10.1134/S0081543821050047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000745120000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123361119}
Linking options:
  • https://www.mathnet.ru/eng/tm4247
  • https://doi.org/10.4213/tm4247
  • https://www.mathnet.ru/eng/tm/v315/p34
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:288
    Full-text PDF :46
    References:30
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024