|
Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2003, Volume 243, Pages 104–126
(Mi tm424)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On Sharp Constants in Inequalities for the Modulus of a Derivative
V. I. Burenkova, V. A. Gusakovb a Cardiff University
b Moscow Interbank Currency Exchange
Abstract:
For every $1\le r\le\infty$, we solve a Kolmogorov-type problem of describing all triples of numbers $\mu _0,\mu _1,\mu _2\ge 0$ for which there exists a function $f$ with an absolutely continuous derivative on the interval $[0,1]$ such that $\|f\|_{L_\infty (0,1)}=\mu _0$, $|f'(x)|=\mu _1$, and $\|f''\|_{L_r(0,1)}=\mu _2$, where $x$ is a fixed point in the interval $[0,1]$.
Received in April 2003
Citation:
V. I. Burenkov, V. A. Gusakov, “On Sharp Constants in Inequalities for the Modulus of a Derivative”, Function spaces, approximations, and differential equations, Collected papers. Dedicated to the 70th birthday of Oleg Vladimirovich Besov, corresponding member of RAS, Trudy Mat. Inst. Steklova, 243, Nauka, MAIK «Nauka/Inteperiodika», M., 2003, 104–126; Proc. Steklov Inst. Math., 243 (2003), 98–119
Linking options:
https://www.mathnet.ru/eng/tm424 https://www.mathnet.ru/eng/tm/v243/p104
|
|