Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 316, Pages 169–194
DOI: https://doi.org/10.4213/tm4231
(Mi tm4231)
 

This article is cited in 1 scientific paper (total in 1 paper)

Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment

Ion Grama, Quansheng Liu, Erwan Pin

Université Bretagne-Sud, LMBA UMR CNRS 6205, 56000 Vannes, France
Full-text PDF (329 kB) Citations (1)
References:
Abstract: Consider a $d$-type supercritical branching process $Z_n^i=(Z_n^i(1),\ldots ,Z_n^i(d))$, $n\geq 0$, in an independent and identically distributed random environment $\xi =(\xi _0,\xi _1,\ldots )$, starting with one initial particle of type $i$. In a previous paper we have established a Kesten–Stigum type theorem for $Z_n^i$, which implies that for any $1\leq i,j\leq d$, $Z_n^i(j)/\mathbb E_\xi Z_n^i(j) \to W^i$ in probability as $n \to +\infty $, where $\mathbb E_\xi Z_n^i(j)$ is the conditional expectation of $Z_n^i(j)$ given the environment $\xi $ and $W^i$ is a non-negative and finite random variable. The goal of this paper is to obtain a necessary and sufficient condition for the convergence in $L^p$ of $Z_n^i(j)/\mathbb E_\xi Z_n^i(j)$, and to prove that the convergence rate is exponential. To this end, we first establish the corresponding results for the fundamental martingale $(W_n^i)$ associated to the branching process $(Z_n^i)$.
Funding agency Grant number
Agence Nationale de la Recherche ANR-11-LABX-0020-01
National Natural Science Foundation of China 11971063
11731012
The work was supported by the Centre Henri Lebesgue (CHL, ANR-11-LABX-0020-01, France) and the National Natural Science Foundation of China (grant nos. 11971063 and 11731012).
Received: February 19, 2021
Revised: May 8, 2021
Accepted: November 10, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 316, Pages 160–183
DOI: https://doi.org/10.1134/S0081543822010126
Bibliographic databases:
Document Type: Article
UDC: 519.218.2+519.214.6
Language: Russian
Citation: Ion Grama, Quansheng Liu, Erwan Pin, “Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment”, Branching Processes and Related Topics, Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin, Trudy Mat. Inst. Steklova, 316, Steklov Math. Inst., Moscow, 2022, 169–194; Proc. Steklov Inst. Math., 316 (2022), 160–183
Citation in format AMSBIB
\Bibitem{GraLiuPin22}
\by Ion~Grama, Quansheng~Liu, Erwan~Pin
\paper Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment
\inbook Branching Processes and Related Topics
\bookinfo Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 316
\pages 169--194
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4231}
\crossref{https://doi.org/10.4213/tm4231}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 316
\pages 160--183
\crossref{https://doi.org/10.1134/S0081543822010126}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129087355}
Linking options:
  • https://www.mathnet.ru/eng/tm4231
  • https://doi.org/10.4213/tm4231
  • https://www.mathnet.ru/eng/tm/v316/p169
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:186
    Full-text PDF :29
    References:54
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024