Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 315, Pages 160–171
DOI: https://doi.org/10.4213/tm4226
(Mi tm4226)
 

This article is cited in 2 scientific papers (total in 2 papers)

Reconstruction of an Unbounded Input of a System of Differential Equations

V. I. Maksimov

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (203 kB) Citations (2)
References:
Abstract: We consider the problem of reconstructing an unbounded nonsmooth input of a system of ordinary differential equations that are nonlinear in the state variables and linear in control. The problem has two features. First, we assume that the state coordinates of the system are measured (with error) at discrete instants of time. Second, we assume that the unknown input is an element of the space of functions with square integrable Euclidean norm, i.e., it may be nonsmooth and unbounded. Taking into account this feature of the problem, we construct an algorithm for solving it that is stable to information noise and computational errors. The algorithm is based on a combination of constructions of the theory of ill-posed problems and the well-known extremal shift method from the theory of positional differential games.
Keywords: system of differential equations, stable reconstruction.
Received: October 21, 2020
Revised: December 2, 2020
Accepted: June 30, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 315, Pages 149–160
DOI: https://doi.org/10.1134/S0081543821050114
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: V. I. Maksimov, “Reconstruction of an Unbounded Input of a System of Differential Equations”, Optimal Control and Differential Games, Collected papers, Trudy Mat. Inst. Steklova, 315, Steklov Math. Inst., Moscow, 2021, 160–171; Proc. Steklov Inst. Math., 315 (2021), 149–160
Citation in format AMSBIB
\Bibitem{Mak21}
\by V.~I.~Maksimov
\paper Reconstruction of an Unbounded Input of a System of Differential Equations
\inbook Optimal Control and Differential Games
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 315
\pages 160--171
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4226}
\crossref{https://doi.org/10.4213/tm4226}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 315
\pages 149--160
\crossref{https://doi.org/10.1134/S0081543821050114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000745120000011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123245837}
Linking options:
  • https://www.mathnet.ru/eng/tm4226
  • https://doi.org/10.4213/tm4226
  • https://www.mathnet.ru/eng/tm/v315/p160
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :43
    References:32
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024