Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 315, Pages 237–246
DOI: https://doi.org/10.4213/tm4221
(Mi tm4221)
 

Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6)

Yu. L. Sachkov, E. F. Sachkova

Ailamazyan Program Systems Institute of Russian Academy of Sciences
References:
Abstract: We describe all Carnot algebras with growth vector $(2,3,5,6)$, their normal forms, an invariant that distinguishes them, and a basis change that reduces such an algebra to a normal form. For every normal form, we calculate the Casimir functions and symplectic foliations on the Lie coalgebra. We describe the invariant and the normal forms of left-invariant $(2,3,5,6)$-distributions. We also obtain a classification of all left-invariant sub-Riemannian structures on $(2,3,5,6)$-Carnot groups up to isometry and present models of these structures.
Keywords: sub-Riemannian geometry, Carnot algebras, Carnot groups, left-invariant sub-Riemannian structures.
Funding agency Grant number
Russian Science Foundation 17-11-01387-П
This work is supported by the Russian Science Foundation under grant 17-11-01387-P.
Received: February 16, 2021
Revised: April 7, 2021
Accepted: June 29, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 315, Pages 223–232
DOI: https://doi.org/10.1134/S0081543821050175
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: Yu. L. Sachkov, E. F. Sachkova, “Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6)”, Optimal Control and Differential Games, Collected papers, Trudy Mat. Inst. Steklova, 315, Steklov Math. Inst., Moscow, 2021, 237–246; Proc. Steklov Inst. Math., 315 (2021), 223–232
Citation in format AMSBIB
\Bibitem{SacSac21}
\by Yu.~L.~Sachkov, E.~F.~Sachkova
\paper Carnot Algebras and Sub-Riemannian Structures with Growth Vector (2,$\,$3,$\,$5,$\,$6)
\inbook Optimal Control and Differential Games
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 315
\pages 237--246
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4221}
\crossref{https://doi.org/10.4213/tm4221}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 315
\pages 223--232
\crossref{https://doi.org/10.1134/S0081543821050175}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000745120000017}
Linking options:
  • https://www.mathnet.ru/eng/tm4221
  • https://doi.org/10.4213/tm4221
  • https://www.mathnet.ru/eng/tm/v315/p237
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :62
    References:26
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024