Abstract:
Consider a branching random walk (Vu)u∈TIGW(Vu)u∈TIGW in ZdZd with the genealogy tree TIGW formed by a sequence of i.i.d. critical Galton–Watson trees. Let Rn be the set of points in Zd visited by (Vu) when the index u explores the first n subtrees in TIGW. Our main result states that for d∈{3,4,5}, the capacity of Rn is almost surely equal to n(d−2)/2+o(1) as n→∞.
Keywords:
branching random walk, tree-indexed random walk, capacity.
Citation:
Tianyi Bai, Yueyun Hu, “Capacity of the Range of Branching Random Walks in Low Dimensions”, Branching Processes and Related Topics, Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin, Trudy Mat. Inst. Steklova, 316, Steklov Math. Inst., Moscow, 2022, 32–46; Proc. Steklov Inst. Math., 316 (2022), 26–39
\Bibitem{BaiHu22}
\by Tianyi~Bai, Yueyun~Hu
\paper Capacity of the Range of Branching Random Walks in Low Dimensions
\inbook Branching Processes and Related Topics
\bookinfo Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 316
\pages 32--46
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4217}
\crossref{https://doi.org/10.4213/tm4217}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 316
\pages 26--39
\crossref{https://doi.org/10.1134/S0081543822010047}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85140789904}
Linking options:
https://www.mathnet.ru/eng/tm4217
https://doi.org/10.4213/tm4217
https://www.mathnet.ru/eng/tm/v316/p32
This publication is cited in the following 4 articles:
Amir Dembo, Izumi Okada, “Capacity of the range of random walk: The law of the iterated logarithm”, Ann. Probab., 52:5 (2024)
Amine Asselah, Bruno Schapira, “Time spent in a ball by a critical branching random walk”, Journal de l'École polytechnique — Mathématiques, 11 (2024), 1441
W. Cygan, N. Sandrić, S. Šebek, “Invariance principle for the capacity and the cardinality of the range of stable random walks”, Stochastic Processes and their Applications, 163 (2023), 61–84
T. Bai, Y. Hu, “Convergence in law for the capacity of the range of a critical branching random walk”, Ann. Appl. Probab., 33:6A (2023), 4964–4994