Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 316, Pages 316–335
DOI: https://doi.org/10.4213/tm4209
(Mi tm4209)
 

Large Deviations of a Strongly Subcritical Branching Process in a Random Environment

A. V. Shklyaev

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: We consider probabilities of large deviations for a strongly subcritical branching process $\{Z_n,\, n\ge 0\}$ in a random environment generated by a sequence of independent identically distributed random variables. It is assumed that the increments of the associated random walk $S_n=\xi _1+\ldots +\xi _n$ have finite mean $\mu $ and satisfy the Cramér condition $\operatorname {\mathbf E}e^{h\xi _i}<\infty $, $0<h<h^+$. Under additional moment restrictions on $Z_1$, we find exact asymptotics of the probabilities $\operatorname {\mathbf P}(\ln Z_n \in [x,x+\Delta _n))$ with $x/n$ varying in the range $(0,\gamma )$, where $\gamma $ is a positive constant, for all sequences $\Delta _n$ that tend to zero sufficiently slowly as $n\to \infty $. This result complements an earlier theorem of the author on the asymptotics of such probabilities in the case where $x/n>\gamma $.
Funding agency Grant number
Russian Science Foundation 19-11-00111
This work is supported by the Russian Science Foundation under grant 19-11-00111.
Received: April 28, 2021
Revised: May 13, 2021
Accepted: September 29, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 316, Pages 298–317
DOI: https://doi.org/10.1134/S0081543822010217
Bibliographic databases:
Document Type: Article
UDC: 519.214.8
Language: Russian
Citation: A. V. Shklyaev, “Large Deviations of a Strongly Subcritical Branching Process in a Random Environment”, Branching Processes and Related Topics, Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin, Trudy Mat. Inst. Steklova, 316, Steklov Math. Inst., Moscow, 2022, 316–335; Proc. Steklov Inst. Math., 316 (2022), 298–317
Citation in format AMSBIB
\Bibitem{Shk22}
\by A.~V.~Shklyaev
\paper Large Deviations of a Strongly Subcritical Branching Process in a Random Environment
\inbook Branching Processes and Related Topics
\bookinfo Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 316
\pages 316--335
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4209}
\crossref{https://doi.org/10.4213/tm4209}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461486}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 316
\pages 298--317
\crossref{https://doi.org/10.1134/S0081543822010217}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129333961}
Linking options:
  • https://www.mathnet.ru/eng/tm4209
  • https://doi.org/10.4213/tm4209
  • https://www.mathnet.ru/eng/tm/v316/p316
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024