Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 316, Pages 235–247
DOI: https://doi.org/10.4213/tm4208
(Mi tm4208)
 

Method of Moments and Sums of Random Indicators

V. A. Kopyttseva, V. G. Mikhailovb

a Academy of Cryptography of the Russian Federation, Novyi Arbat 19, Moscow, 103025 Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: Using the method of moments, we derive two theorems on the normal approximation of the sum of $n$ random indicators in a scheme of series in which the joint distribution of indicators may change with increasing $n$. The first theorem provides conditions for the convergence of all moments to the moments of the normal distribution as $n\to \infty $, and the second theorem provides accuracy estimates for the normal approximation in the uniform metric. To demonstrate the efficiency of the results, we use the particle allocation problem and the problem on the accuracy of the normal approximation for the number of solutions to random nonlinear inclusions.
Received: September 14, 2020
Revised: April 13, 2021
Accepted: July 29, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 316, Pages 220–232
DOI: https://doi.org/10.1134/S0081543822010163
Bibliographic databases:
Document Type: Article
UDC: 519.214.5
Language: Russian
Citation: V. A. Kopyttsev, V. G. Mikhailov, “Method of Moments and Sums of Random Indicators”, Branching Processes and Related Topics, Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin, Trudy Mat. Inst. Steklova, 316, Steklov Math. Inst., Moscow, 2022, 235–247; Proc. Steklov Inst. Math., 316 (2022), 220–232
Citation in format AMSBIB
\Bibitem{KopMik22}
\by V.~A.~Kopyttsev, V.~G.~Mikhailov
\paper Method of Moments and Sums of Random Indicators
\inbook Branching Processes and Related Topics
\bookinfo Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 316
\pages 235--247
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4208}
\crossref{https://doi.org/10.4213/tm4208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461481}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 316
\pages 220--232
\crossref{https://doi.org/10.1134/S0081543822010163}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129299200}
Linking options:
  • https://www.mathnet.ru/eng/tm4208
  • https://doi.org/10.4213/tm4208
  • https://www.mathnet.ru/eng/tm/v316/p235
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :58
    References:51
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024