Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Volume 316, Pages 285–297
DOI: https://doi.org/10.4213/tm4203
(Mi tm4203)
 

This article is cited in 1 scientific paper (total in 1 paper)

The Limiting Distribution of the Hook Length of a Randomly Chosen Cell in a Random Young Diagram

Ljuben R. Mutafchievab

a Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. 8, Sofia, 1113, Bulgaria
b American University in Bulgaria, Georgi Izmirliev Sq. 1, Blagoevgrad, 2700, Bulgaria
Full-text PDF (244 kB) Citations (1)
References:
Abstract: Let $p(n)$ be the number of all integer partitions of the positive integer $n$, and let $\lambda $ be a partition selected uniformly at random from among all such $p(n)$ partitions. It is well known that each partition $\lambda $ has a unique graphical representation composed of $n$ non-overlapping cells in the plane, called a Young diagram. As a second step of our sampling experiment, we select a cell $c$ uniformly at random from among the $n$ cells of the Young diagram of the partition $\lambda $. For large $n$, we study the asymptotic behavior of the hook length $Z_n=Z_n(\lambda ,c)$ of the cell $c$ of a random partition $\lambda $. This two-step sampling procedure suggests a product probability measure, which assigns the probability $1/np(n)$ to each pair $(\lambda ,c)$. With respect to this probability measure, we show that the random variable $\pi Z_n/\sqrt {6n}$ converges weakly, as $n\to \infty $, to a random variable whose probability density function equals $6y/(\pi ^2(e^y-1))$ if $0<y<\infty $, and zero elsewhere. Our method of proof is based on Hayman's saddle point approach for admissible power series.
Keywords: integer partition, Young diagram, hook length, limiting distribution.
Funding agency Grant number
Ministry of Education and Science of Bulgaria KP-06-N32/8
This work was supported in part by the Bulgarian Ministry of Education and Science, project no. KP-06-N32/8.
Received: February 16, 2021
Revised: March 19, 2021
Accepted: September 27, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2022, Volume 316, Pages 268–279
DOI: https://doi.org/10.1134/S0081543822010199
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: Ljuben R. Mutafchiev, “The Limiting Distribution of the Hook Length of a Randomly Chosen Cell in a Random Young Diagram”, Branching Processes and Related Topics, Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin, Trudy Mat. Inst. Steklova, 316, Steklov Math. Inst., Moscow, 2022, 285–297; Proc. Steklov Inst. Math., 316 (2022), 268–279
Citation in format AMSBIB
\Bibitem{Mut22}
\by Ljuben~R.~Mutafchiev
\paper The Limiting Distribution of the Hook Length of a Randomly Chosen Cell in a Random Young Diagram
\inbook Branching Processes and Related Topics
\bookinfo Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and 70th birthday of Vladimir Alekseevich Vatutin
\serial Trudy Mat. Inst. Steklova
\yr 2022
\vol 316
\pages 285--297
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4203}
\crossref{https://doi.org/10.4213/tm4203}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2022
\vol 316
\pages 268--279
\crossref{https://doi.org/10.1134/S0081543822010199}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129195652}
Linking options:
  • https://www.mathnet.ru/eng/tm4203
  • https://doi.org/10.4213/tm4203
  • https://www.mathnet.ru/eng/tm/v316/p285
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:318
    Full-text PDF :35
    References:51
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024