Abstract:
By constructing suitable nonnegative exponential sums, we give upper bounds on the cardinality of any set $B_q$ in cyclic groups $\mathbb Z_q$ such that the difference set $B_q-B_q$ avoids cubic residues modulo $q$.
Citation:
Máté Matolcsi, Imre Z. Ruzsa, “Difference Sets and Positive Exponential Sums. II: Cubic Residues in Cyclic Groups”, Analytic and Combinatorial Number Theory, Collected papers. In commemoration of the 130th birth anniversary of Academician Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklova, 314, Steklov Math. Inst., Moscow, 2021, 145–151; Proc. Steklov Inst. Math., 314 (2021), 138–143