Abstract:
We consider a number of nonstandard boundary value problems for the system of Poisson equations on the plane. The statement of these problems is based on the decomposition of the Sobolev space into the sum of kernels of trace functionals and one-dimensional subspaces spanned by a basis vector on which the corresponding trace functional is nontrivial. These problems are nonstandard in the sense that the boundary conditions are nonlocal and may contain the main first-order differential operators of field theory, i.e., the gradient, divergence, and curl. We prove existence and uniqueness theorems for the solutions in the framework of the duality between the Sobolev space and its conjugate space.
Citation:
Yu. A. Dubinskii, “Kernels of Trace Functionals and Field-Theory Boundary Value Problems on the Plane”, Function Spaces, Approximation Theory, and Related Problems of Analysis, Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 312, Steklov Math. Inst., Moscow, 2021, 158–169; Proc. Steklov Inst. Math., 312 (2021), 150–161
\Bibitem{Dub21}
\by Yu.~A.~Dubinskii
\paper Kernels of Trace Functionals and Field-Theory Boundary Value Problems on the Plane
\inbook Function Spaces, Approximation Theory, and Related Problems of Analysis
\bookinfo Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 312
\pages 158--169
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4185}
\crossref{https://doi.org/10.4213/tm4185}
\elib{https://elibrary.ru/item.asp?id=46023517}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 312
\pages 150--161
\crossref{https://doi.org/10.1134/S0081543821010089}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000642515300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104782755}
Linking options:
https://www.mathnet.ru/eng/tm4185
https://doi.org/10.4213/tm4185
https://www.mathnet.ru/eng/tm/v312/p158
This publication is cited in the following 2 articles:
Yu. A. Dubinskii, L. V. Provorotova, “Nonstandard Boundary Value Problems of Theory of Two-Dimensional Vector Fields”, J Math Sci, 281:4 (2024), 595
Yu. A. Dubinskii, “Singular trace of 3d-vector fields and the corresponding boundary value problems”, J. Math. Sci., 276:1 (2023), 61