Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2003, Volume 243, Pages 17–45 (Mi tm418)  

On the Boundedness of Singular Integral Operators. I

S. S. Ajiev

Australian National University
References:
Abstract: The boundedness of anisotropic singular integral operators with the domains of definition and ranges in various anisotropic spaces of Banach-valued functions is analyzed from the unified point of view. A number of sufficient parameterized classes of conditions are obtained that are expressed in terms of the approximation $\mathcal D$-functional and are sharp in a certain sense. Some classes of conditions are given with a simultaneous use of local and global approximations. The inhomogeneity of the dependence on certain parameters is revealed. The results obtained also apply to nonsingular (in the ordinary sense) integral operators, for example, to potential-type operators. The main results are presented in the style of the Calderón–Zygmund theory. The approach is based on the study of $p$-convex hulls, decompositions into a sum of atomic complexes, and other properties of function spaces.
Received in September 2002
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: S. S. Ajiev, “On the Boundedness of Singular Integral Operators. I”, Function spaces, approximations, and differential equations, Collected papers. Dedicated to the 70th birthday of Oleg Vladimirovich Besov, corresponding member of RAS, Trudy Mat. Inst. Steklova, 243, Nauka, MAIK «Nauka/Inteperiodika», M., 2003, 17–45; Proc. Steklov Inst. Math., 243 (2003), 11–38
Citation in format AMSBIB
\Bibitem{Aji03}
\by S.~S.~Ajiev
\paper On the Boundedness of Singular Integral Operators.~I
\inbook Function spaces, approximations, and differential equations
\bookinfo Collected papers. Dedicated to the 70th birthday of Oleg Vladimirovich Besov, corresponding member of RAS
\serial Trudy Mat. Inst. Steklova
\yr 2003
\vol 243
\pages 17--45
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm418}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2049460}
\zmath{https://zbmath.org/?q=an:1068.42013}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2003
\vol 243
\pages 11--38
Linking options:
  • https://www.mathnet.ru/eng/tm418
  • https://www.mathnet.ru/eng/tm/v243/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025