Abstract:
A simple example of completely positive dynamics is considered for which both the generator of a nonlocal integro-differential equation leading to such dynamics and the time-local generator can be calculated explicitly. It is demonstrated that introducing a small parameter in this simple example allows one to reproduce some nonperturbative phenomena that occur in more realistic models. In addition, a special case of fermionic dynamics is considered, and it is shown that one can actually find families of moments whose dynamics is linear but satisfies non-Markovian equations.
Citation:
A. E. Teretenkov, “An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations”, Mathematics of Quantum Technologies, Collected papers, Trudy Mat. Inst. Steklova, 313, Steklov Math. Inst., Moscow, 2021, 253–262; Proc. Steklov Inst. Math., 313 (2021), 236–245
\Bibitem{Ter21}
\by A.~E.~Teretenkov
\paper An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations
\inbook Mathematics of Quantum Technologies
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 313
\pages 253--262
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4160}
\crossref{https://doi.org/10.4213/tm4160}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4286423}
\elib{https://elibrary.ru/item.asp?id=46908229}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 313
\pages 236--245
\crossref{https://doi.org/10.1134/S0081543821020218}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000674956500021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110733875}
Linking options:
https://www.mathnet.ru/eng/tm4160
https://doi.org/10.4213/tm4160
https://www.mathnet.ru/eng/tm/v313/p253
This publication is cited in the following 2 articles:
A. E. Teretenkov, “Memory tensor for non-Markovian dynamics with random Hamiltonian”, Mathematics, 11:18 (2023), 3854–19
Teretenkov A.E., “Long-Time Markovianity of Multi-Level Systems in the Rotating Wave Approximation”, Lobachevskii J. Math., 42:10, SI (2021), 2455–2465