Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 313, Pages 87–108
DOI: https://doi.org/10.4213/tm4158
(Mi tm4158)
 

This article is cited in 9 scientific papers (total in 9 papers)

Disclinations in the Geometric Theory of Defects

M. O. Katanaev

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (382 kB) Citations (9)
References:
Abstract: In the geometric theory of defects, media with a spin structure (for example, ferromagnets) are regarded as manifolds with given Riemann–Cartan geometry. We consider the case with the Euclidean metric, which corresponds to the absence of elastic deformations, but with nontrivial $\mathbb {SO}(3)$ connection, which produces nontrivial curvature and torsion tensors. We show that the 't Hooft–Polyakov monopole has a physical interpretation; namely, in solid state physics it describes media with continuous distribution of dislocations and disclinations. To describe single disclinations, we use the Chern–Simons action. We give two examples of point disclinations: a spherically symmetric point “hedgehog” disclination and a point disclination for which the $n$-field takes a fixed value at infinity and has an essential singularity at the origin. We also construct an example of linear disclinations with Frank vector divisible by $2\pi $.
Funding agency Grant number
Russian Foundation for Basic Research 19-11-50067
This work was supported by the Russian Foundation for Basic Research, project no. 19-11-50067.
Received: May 16, 2020
Revised: November 15, 2020
Accepted: December 12, 2020
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 313, Pages 78–98
DOI: https://doi.org/10.1134/S0081543821020097
Bibliographic databases:
Document Type: Article
UDC: 514.86
Language: Russian
Citation: M. O. Katanaev, “Disclinations in the Geometric Theory of Defects”, Mathematics of Quantum Technologies, Collected papers, Trudy Mat. Inst. Steklova, 313, Steklov Math. Inst., Moscow, 2021, 87–108; Proc. Steklov Inst. Math., 313 (2021), 78–98
Citation in format AMSBIB
\Bibitem{Kat21}
\by M.~O.~Katanaev
\paper Disclinations in the Geometric Theory of Defects
\inbook Mathematics of Quantum Technologies
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 313
\pages 87--108
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4158}
\crossref{https://doi.org/10.4213/tm4158}
\elib{https://elibrary.ru/item.asp?id=46904437}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 313
\pages 78--98
\crossref{https://doi.org/10.1134/S0081543821020097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000674956500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110980191}
Linking options:
  • https://www.mathnet.ru/eng/tm4158
  • https://doi.org/10.4213/tm4158
  • https://www.mathnet.ru/eng/tm/v313/p87
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024