Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 312, Pages 111–130
DOI: https://doi.org/10.4213/tm4152
(Mi tm4152)
 

Inequalities for Orthogonal Series and a Strengthening of the Carleman–Olevskii Theorem for Complete Orthonormal Systems

S. V. Bochkarev

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: On the basis of interpolation theory, several new inequalities are established for both general orthonormal systems and various specific classes of orthonormal systems including the Haar and Franklin systems and wavelets. The solution of the problem of characterizing the Fourier coefficients of continuous functions for general orthonormal systems is completed. For every complete orthonormal system, a continuous function is constructed that generates a universal singularity similar to the one appearing in Carleman's theorem. This result significantly strengthens Olevskii's theorem and turns into Orlicz's theorem at the other end of the power scale. It is proved that the results obtained are, in a sense, final.
Keywords: complete orthonormal system, interpolation of spaces and operators, retraction, Carleman's theorem.
Received: June 2, 2020
Revised: September 12, 2020
Accepted: January 25, 2021
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 312, Pages 104–123
DOI: https://doi.org/10.1134/S0081543821010065
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: S. V. Bochkarev, “Inequalities for Orthogonal Series and a Strengthening of the Carleman–Olevskii Theorem for Complete Orthonormal Systems”, Function Spaces, Approximation Theory, and Related Problems of Analysis, Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 312, Steklov Math. Inst., Moscow, 2021, 111–130; Proc. Steklov Inst. Math., 312 (2021), 104–123
Citation in format AMSBIB
\Bibitem{Boc21}
\by S.~V.~Bochkarev
\paper Inequalities for Orthogonal Series and a Strengthening of the Carleman--Olevskii Theorem for Complete Orthonormal Systems
\inbook Function Spaces, Approximation Theory, and Related Problems of Analysis
\bookinfo Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 312
\pages 111--130
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4152}
\crossref{https://doi.org/10.4213/tm4152}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4237393}
\elib{https://elibrary.ru/item.asp?id=46058173}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 312
\pages 104--123
\crossref{https://doi.org/10.1134/S0081543821010065}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000642515300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104670704}
Linking options:
  • https://www.mathnet.ru/eng/tm4152
  • https://doi.org/10.4213/tm4152
  • https://www.mathnet.ru/eng/tm/v312/p111
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025