Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Volume 312, Pages 224–235
DOI: https://doi.org/10.4213/tm4136
(Mi tm4136)
 

Kolmogorov Widths of the Besov Classes $B^1_{1,\theta }$ and Products of Octahedra

Yuri V. Malykhinab

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b Laboratory “High-Dimensional Approximation and Applications,” Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991 Russia
References:
Abstract: We find the decay orders of the Kolmogorov widths of some Besov classes related to $W^1_1$ (the behavior of the widths for the class $W^1_1$ remains unknown): $d_n(B^1_{1,\theta }[0,1],L_q[0,1])\asymp n^{-1/2}\log ^{\max \{1/2,1-1/\theta \}}n$ for $2<q<\infty $ and $1\le \theta \le \infty $. The proof relies on the lower bound for the width of a product of octahedra in a special norm (maximum of two weighted $\ell _{q_i}$ norms). This bound generalizes B. S. Kashin's theorem on the widths of octahedra in $\ell _q$.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.W03.31.0031
This work was supported by a grant of the Government of the Russian Federation (project no. 14.W03.31.0031).
Received: May 19, 2020
Revised: October 10, 2020
Accepted: October 20, 2020
English version:
Proceedings of the Steklov Institute of Mathematics, 2021, Volume 312, Pages 215–225
DOI: https://doi.org/10.1134/S0081543821010132
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: Yuri V. Malykhin, “Kolmogorov Widths of the Besov Classes $B^1_{1,\theta }$ and Products of Octahedra”, Function Spaces, Approximation Theory, and Related Problems of Analysis, Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 312, Steklov Math. Inst., Moscow, 2021, 224–235; Proc. Steklov Inst. Math., 312 (2021), 215–225
Citation in format AMSBIB
\Bibitem{Mal21}
\by Yuri~V.~Malykhin
\paper Kolmogorov Widths of the Besov Classes $B^1_{1,\theta }$ and Products of Octahedra
\inbook Function Spaces, Approximation Theory, and Related Problems of Analysis
\bookinfo Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii
\serial Trudy Mat. Inst. Steklova
\yr 2021
\vol 312
\pages 224--235
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4136}
\crossref{https://doi.org/10.4213/tm4136}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4237400}
\elib{https://elibrary.ru/item.asp?id=46022866}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2021
\vol 312
\pages 215--225
\crossref{https://doi.org/10.1134/S0081543821010132}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000642515300013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104581856}
Linking options:
  • https://www.mathnet.ru/eng/tm4136
  • https://doi.org/10.4213/tm4136
  • https://www.mathnet.ru/eng/tm/v312/p224
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024