|
This article is cited in 2 scientific papers (total in 2 papers)
Weighted Fourier Inequalities and Boundedness of Variation
Sergey Yu. Tikhonovabc a Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona), Spain
b ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
c Universitat Autònoma de Barcelona, Plaça Cívica, 08193 Bellaterra (Cerdanyola del Vallès), Spain
Abstract:
We study the trigonometric series $\sum _{n=1}^\infty \lambda _n \cos nx$ and $\sum _{n=1}^\infty \lambda _n \sin nx$ with $\{\lambda _n\}$ being a sequence of bounded variation. Let $\psi $ denote the sum of such a series. We obtain necessary and sufficient conditions for the validity of the weighted Fourier inequality $\left (\int _0^\pi |\psi (x)|^q \omega (x)\,dx\right )^{1/q} \le C\!\left (\sum _{n=1}^\infty u_n\left (\sum _{k=n}^\infty |\lambda _{k}-\lambda _{k+1}|\right )^p \right )^{1/p}$, $0<p\le q<\infty $, in terms of the weight $\omega $ and the weighted sequence $\{u_n\}$. Applications to the series with general monotone coefficients are given.
Keywords:
Fourier series/transforms, weighted norm inequalities, Hardy–Littlewood type theorems, general monotone sequences.
Received: April 15, 2020 Revised: September 16, 2020 Accepted: October 9, 2020
Citation:
Sergey Yu. Tikhonov, “Weighted Fourier Inequalities and Boundedness of Variation”, Function Spaces, Approximation Theory, and Related Problems of Analysis, Collected papers. In commemoration of the 115th anniversary of Academician Sergei Mikhailovich Nikol'skii, Trudy Mat. Inst. Steklova, 312, Steklov Math. Inst., Moscow, 2021, 294–312; Proc. Steklov Inst. Math., 312 (2021), 282–300
Linking options:
https://www.mathnet.ru/eng/tm4130https://doi.org/10.4213/tm4130 https://www.mathnet.ru/eng/tm/v312/p294
|
|