Abstract:
We describe a class of spectral curves and find explicit formulas for the Darboux coordinates of Hitchin systems corresponding to classical simple groups on hyperelliptic curves. We consider in detail the systems with rank 2 groups on genus 2 curves.
The work of the second author was supported by the Russian Foundation for Basic Research (project no. 20-01-00157) and by the RAS Program “Nonlinear Dynamics: Fundamental Problems and Applications.”
Citation:
P. I. Borisova, O. K. Sheinman, “Hitchin Systems on Hyperelliptic Curves”, Analysis and mathematical physics, Collected papers. On the occasion of the 70th birthday of Professor Armen Glebovich Sergeev, Trudy Mat. Inst. Steklova, 311, Steklov Math. Inst., Moscow, 2020, 27–40; Proc. Steklov Inst. Math., 311 (2020), 22–35
\Bibitem{BorShe20}
\by P.~I.~Borisova, O.~K.~Sheinman
\paper Hitchin Systems on Hyperelliptic Curves
\inbook Analysis and mathematical physics
\bookinfo Collected papers. On the occasion of the 70th birthday of Professor Armen Glebovich Sergeev
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 311
\pages 27--40
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4111}
\crossref{https://doi.org/10.4213/tm4111}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4223981}
\elib{https://elibrary.ru/item.asp?id=45173338}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 311
\pages 22--35
\crossref{https://doi.org/10.1134/S0081543820060036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000614212700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095377033}
Linking options:
https://www.mathnet.ru/eng/tm4111
https://doi.org/10.4213/tm4111
https://www.mathnet.ru/eng/tm/v311/p27
This publication is cited in the following 3 articles:
Russian Math. Surveys, 79:4 (2024), 683–720
O. K. Sheinman, “Separation of Variables for Hitchin Systems with the Structure Group SO(4) on Genus 2 Curves”, Proc. Steklov Inst. Math., 325 (2024), 292–303
Sheinman O.K., “Quantization of Integrable Systems With Spectral Parameter on a Riemann Surface”, Dokl. Math., 102:3 (2020), 524–527