Abstract:
We study integrable discretizations of geodesic flows of Euclidean metrics on the cotangent bundles of the Stiefel manifolds Vn,r. In particular, for n=3 and r=2, after the identification V3,2≅SO(3), we obtain a discrete analog of the Euler case of the rigid body motion corresponding to the inertia operator I=(1,1,2). In addition, billiard-type mappings are considered; one of them turns out to be the “square root” of the discrete Neumann system on Vn,r.
The research of B. Jovanović was supported by the Serbian Ministry of Education, Science and Technological Development through the Mathematical Institute of the Serbian Academy of Sciences and Arts. The research of Yu. N. Fedorov was partially funded by the Spanish MINECO-FEDER grants MTM2016-80276-P and PGC2018-098676-B-I00/AEI/FEDER/UE and the provincial grant 2017SGR1049.
Citation:
Božidar Jovanović, Yuri N. Fedorov, “Discrete Geodesic Flows on Stiefel Manifolds”, Selected issues of mathematics and mechanics, Collected papers. On the occasion of the 70th birthday of Academician Valery Vasil'evich Kozlov, Trudy Mat. Inst. Steklova, 310, Steklov Math. Inst., Moscow, 2020, 176–188; Proc. Steklov Inst. Math., 310 (2020), 163–174
\Bibitem{JovFed20}
\by Bo{\v z}idar~Jovanovi\'c, Yuri~N.~Fedorov
\paper Discrete Geodesic Flows on Stiefel Manifolds
\inbook Selected issues of mathematics and mechanics
\bookinfo Collected papers. On the occasion of the 70th birthday of Academician Valery Vasil'evich Kozlov
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 310
\pages 176--188
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4107}
\crossref{https://doi.org/10.4213/tm4107}
\elib{https://elibrary.ru/item.asp?id=45104541}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 310
\pages 163--174
\crossref{https://doi.org/10.1134/S0081543820050132}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000595790500013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097098840}
Linking options:
https://www.mathnet.ru/eng/tm4107
https://doi.org/10.4213/tm4107
https://www.mathnet.ru/eng/tm/v310/p176
This publication is cited in the following 1 articles:
Yu. Fedorov, B. Jovanovic, “Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi-Mumford systems”, Discret. Contin. Dyn. Syst., 41:6 (2021), 2559–2599