Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2020, Volume 310, Pages 280–308
DOI: https://doi.org/10.4213/tm4097
(Mi tm4097)
 

This article is cited in 3 scientific papers (total in 3 papers)

$\mu $-Norm of an Operator

D. V. Treschev

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (332 kB) Citations (3)
References:
Abstract: Let $(\mathcal X,\mu )$ be a measure space. For any measurable set $Y\subset \mathcal X$ let $\mathbf 1_Y: \mathcal X\to \mathbb{R} $ be the indicator of $Y$ and let $\pi _Y^{}$ be the orthogonal projection $L^2(\mathcal X)\ni f\mapsto {\pi _Y^{}}_{} f = \mathbf 1_Y f$. For any bounded operator $W$ on $L^2(\mathcal X,\mu )$ we define its $\mu $-norm $\|W\|_\mu = \inf _\chi \sqrt {\sum \mu (Y_j)\|W\pi _Y^{}\|^2}$, where the infimum is taken over all measurable partitions $\chi =\{Y_1,\dots ,Y_J\}$ of $\mathcal X$. We present some properties of the $\mu $-norm and some computations. Our main motivation is the problem of constructing a quantum entropy.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00887
The work was supported in part by the Russian Foundation for Basic Research, project no. 18-01-00887.
Received: January 17, 2020
Revised: January 17, 2020
Accepted: April 8, 2020
English version:
Proceedings of the Steklov Institute of Mathematics, 2020, Volume 310, Pages 262–290
DOI: https://doi.org/10.1134/S008154382005020X
Bibliographic databases:
Document Type: Article
UDC: 517.983.24
Language: Russian
Citation: D. V. Treschev, “$\mu $-Norm of an Operator”, Selected issues of mathematics and mechanics, Collected papers. On the occasion of the 70th birthday of Academician Valery Vasil'evich Kozlov, Trudy Mat. Inst. Steklova, 310, Steklov Math. Inst., Moscow, 2020, 280–308; Proc. Steklov Inst. Math., 310 (2020), 262–290
Citation in format AMSBIB
\Bibitem{Tre20}
\by D.~V.~Treschev
\paper $\mu $-Norm of an Operator
\inbook Selected issues of mathematics and mechanics
\bookinfo Collected papers. On the occasion of the 70th birthday of Academician Valery Vasil'evich Kozlov
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 310
\pages 280--308
\publ Steklov Math. Inst.
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4097}
\crossref{https://doi.org/10.4213/tm4097}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4173206}
\elib{https://elibrary.ru/item.asp?id=45101033}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 310
\pages 262--290
\crossref{https://doi.org/10.1134/S008154382005020X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000595790500020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097165190}
Linking options:
  • https://www.mathnet.ru/eng/tm4097
  • https://doi.org/10.4213/tm4097
  • https://www.mathnet.ru/eng/tm/v310/p280
  • Related presentations:
    This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:381
    Full-text PDF :127
    References:49
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024