Abstract:
We derive a Hamiltonian structure for the NN-particle hyperbolic spin Ruijsenaars–Schneider model by means of Poisson reduction of a suitable initial phase space. This phase space is realised as the direct product of the Heisenberg double of a factorisable Lie group with another symplectic manifold that is a certain deformation of the standard canonical relations for NℓNℓ conjugate pairs of dynamical variables. We show that the model enjoys the Poisson–Lie symmetry of the spin group GLℓ(C), which explains its superintegrability. Our results are obtained in the formalism of the classical r-matrix, and they are compatible with the recent findings on the different Hamiltonian structure of the model established in the framework of the quasi-Hamiltonian reduction applied to a quasi-Poisson manifold.
The work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy—EXC 2121 “Quantum Universe”—390833306. The work of E.O. is also supported by the DFG under the Research Training Group 1670.
Citation:
Gleb E. Arutyunov, Enrico Olivucci, “Hyperbolic Spin Ruijsenaars–Schneider Model from Poisson Reduction”, Modern problems of mathematical and theoretical physics, Collected papers. On the occasion of the 80th birthday of Academician Andrei Alekseevich Slavnov, Trudy Mat. Inst. Steklova, 309, Steklov Math. Inst. RAS, Moscow, 2020, 38–53; Proc. Steklov Inst. Math., 309 (2020), 31–45
\Bibitem{AruOli20}
\by Gleb~E.~Arutyunov, Enrico~Olivucci
\paper Hyperbolic Spin Ruijsenaars--Schneider Model from Poisson Reduction
\inbook Modern problems of mathematical and theoretical physics
\bookinfo Collected papers. On the occasion of the 80th birthday of Academician Andrei Alekseevich Slavnov
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 309
\pages 38--53
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4089}
\crossref{https://doi.org/10.4213/tm4089}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4133442}
\elib{https://elibrary.ru/item.asp?id=45373141}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 309
\pages 31--45
\crossref{https://doi.org/10.1134/S0081543820030037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000557522500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089214645}
Linking options:
https://www.mathnet.ru/eng/tm4089
https://doi.org/10.4213/tm4089
https://www.mathnet.ru/eng/tm/v309/p38
This publication is cited in the following 12 articles:
Maxime Fairon, “Integrable systems on multiplicative quiver varieties from cyclic quivers”, J. Phys. A: Math. Theor., 58:4 (2025), 045202
M. Matushko, A. Zotov, “Supersymmetric generalization of q-deformed long-range spin chains of Haldane–Shastry type and trigonometric GL(N|M) solution of associative Yang–Baxter equation”, Nuclear Phys. B, 1001 (2024), 116499–14
L Fehér, “Poisson–Lie analogues of spin Sutherland models revisited”, J. Phys. A: Math. Theor., 57:20 (2024), 205202
A. V. Zotov, M. G. Matushko, “Anisotropic spin generalization of elliptic Macdonald–Ruijsenaars operators and R-matrix identities”, Ann. Henri Poincaré, 24 (2023), 3373–3419
I. Burić, F. Russo, A. Vichi, “Spinning partial waves for scattering amplitudes in d dimensions”, J. High Energ. Phys., 2023:10 (2023), 90
M. Fairon, L. Fehér, “Integrable multi-Hamiltonian systems from reduction of an extended quasi-Poisson double of U(n)”, Ann. Henri Poincaré, 24:10 (2023), 3461
L. Fehér, “Poisson reductions of master integrable systems on doubles of compact Lie groups”, Ann. Henri Poincaré, 24:6 (2023), 1823
L Fehér, “Bi-Hamiltonian structure of Sutherland models coupled to two (n)∗-valued spins from Poisson reduction”, Nonlinearity, 35:6 (2022), 2971
A. V. Zotov, E. S. Trunina, “Lax equations for relativistic GL(NM,C) Gaudin models on elliptic curve”, J. Phys. A, 55:39 (2022), 395202, 31 pp.
Fairon M., Feher L., Marshall I., “Trigonometric Real Form of the Spin Rs Model of Krichever and Zabrodin”, Ann. Henri Poincare, 22:2 (2021), 615–675
M. Fairon, L. Feher, “A decoupling property of some Poisson structures on Matn×d(C)×Matd×n(C) supporting GL(n,C)×GL(d,C) Poisson–Lie symmetry”, J. Math. Phys., 62:3 (2021), 033512
I. A. Sechin, A. V. Zotov, “Integrable system of generalized relativistic interacting tops”, Theoret. and Math. Phys., 205:1 (2020), 1291–1302