Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2020, Volume 309, Pages 38–53
DOI: https://doi.org/10.4213/tm4089
(Mi tm4089)
 

This article is cited in 12 scientific papers (total in 12 papers)

Hyperbolic Spin Ruijsenaars–Schneider Model from Poisson Reduction

Gleb E. Arutyunovab, Enrico Olivucciab

a II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
b Zentrum für Mathematische Physik, Universität Hamburg, Bundesstr. 55, 20146 Hamburg, Germany
References:
Abstract: We derive a Hamiltonian structure for the NN-particle hyperbolic spin Ruijsenaars–Schneider model by means of Poisson reduction of a suitable initial phase space. This phase space is realised as the direct product of the Heisenberg double of a factorisable Lie group with another symplectic manifold that is a certain deformation of the standard canonical relations for NN conjugate pairs of dynamical variables. We show that the model enjoys the Poisson–Lie symmetry of the spin group GL(C), which explains its superintegrability. Our results are obtained in the formalism of the classical r-matrix, and they are compatible with the recent findings on the different Hamiltonian structure of the model established in the framework of the quasi-Hamiltonian reduction applied to a quasi-Poisson manifold.
Funding agency Grant number
Deutsche Forschungsgemeinschaft EXC 2121 - 390833306
Research Training Group 1670
The work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy—EXC 2121 “Quantum Universe”—390833306. The work of E.O. is also supported by the DFG under the Research Training Group 1670.
Received: August 23, 2019
Revised: October 18, 2019
Accepted: March 30, 2020
English version:
Proceedings of the Steklov Institute of Mathematics, 2020, Volume 309, Pages 31–45
DOI: https://doi.org/10.1134/S0081543820030037
Bibliographic databases:
Document Type: Article
UDC: 514.853+517.938
Language: Russian
Citation: Gleb E. Arutyunov, Enrico Olivucci, “Hyperbolic Spin Ruijsenaars–Schneider Model from Poisson Reduction”, Modern problems of mathematical and theoretical physics, Collected papers. On the occasion of the 80th birthday of Academician Andrei Alekseevich Slavnov, Trudy Mat. Inst. Steklova, 309, Steklov Math. Inst. RAS, Moscow, 2020, 38–53; Proc. Steklov Inst. Math., 309 (2020), 31–45
Citation in format AMSBIB
\Bibitem{AruOli20}
\by Gleb~E.~Arutyunov, Enrico~Olivucci
\paper Hyperbolic Spin Ruijsenaars--Schneider Model from Poisson Reduction
\inbook Modern problems of mathematical and theoretical physics
\bookinfo Collected papers. On the occasion of the 80th birthday of Academician Andrei Alekseevich Slavnov
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 309
\pages 38--53
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4089}
\crossref{https://doi.org/10.4213/tm4089}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4133442}
\elib{https://elibrary.ru/item.asp?id=45373141}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 309
\pages 31--45
\crossref{https://doi.org/10.1134/S0081543820030037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000557522500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089214645}
Linking options:
  • https://www.mathnet.ru/eng/tm4089
  • https://doi.org/10.4213/tm4089
  • https://www.mathnet.ru/eng/tm/v309/p38
  • This publication is cited in the following 12 articles:
    1. Maxime Fairon, “Integrable systems on multiplicative quiver varieties from cyclic quivers”, J. Phys. A: Math. Theor., 58:4 (2025), 045202  crossref
    2. M. Matushko, A. Zotov, “Supersymmetric generalization of q-deformed long-range spin chains of Haldane–Shastry type and trigonometric GL(N|M) solution of associative Yang–Baxter equation”, Nuclear Phys. B, 1001 (2024), 116499–14  mathnet  crossref  mathscinet
    3. L Fehér, “Poisson–Lie analogues of spin Sutherland models revisited”, J. Phys. A: Math. Theor., 57:20 (2024), 205202  crossref
    4. A. V. Zotov, M. G. Matushko, “Anisotropic spin generalization of elliptic Macdonald–Ruijsenaars operators and R-matrix identities”, Ann. Henri Poincaré, 24 (2023), 3373–3419  mathnet  crossref  mathscinet
    5. I. Burić, F. Russo, A. Vichi, “Spinning partial waves for scattering amplitudes in d dimensions”, J. High Energ. Phys., 2023:10 (2023), 90  crossref  mathscinet
    6. M. Fairon, L. Fehér, “Integrable multi-Hamiltonian systems from reduction of an extended quasi-Poisson double of U(n)”, Ann. Henri Poincaré, 24:10 (2023), 3461  crossref  mathscinet
    7. L. Fehér, “Poisson reductions of master integrable systems on doubles of compact Lie groups”, Ann. Henri Poincaré, 24:6 (2023), 1823  crossref  mathscinet
    8. L Fehér, “Bi-Hamiltonian structure of Sutherland models coupled to two (n)-valued spins from Poisson reduction”, Nonlinearity, 35:6 (2022), 2971  crossref  mathscinet
    9. A. V. Zotov, E. S. Trunina, “Lax equations for relativistic GL(NM,C) Gaudin models on elliptic curve”, J. Phys. A, 55:39 (2022), 395202, 31 pp.  mathnet  crossref  mathscinet
    10. Fairon M., Feher L., Marshall I., “Trigonometric Real Form of the Spin Rs Model of Krichever and Zabrodin”, Ann. Henri Poincare, 22:2 (2021), 615–675  crossref  mathscinet  isi
    11. M. Fairon, L. Feher, “A decoupling property of some Poisson structures on Matn×d(C)×Matd×n(C) supporting GL(n,C)×GL(d,C) Poisson–Lie symmetry”, J. Math. Phys., 62:3 (2021), 033512  crossref  mathscinet  isi  scopus
    12. I. A. Sechin, A. V. Zotov, “Integrable system of generalized relativistic interacting tops”, Theoret. and Math. Phys., 205:1 (2020), 1291–1302  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :49
    References:114
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025