Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2020, Volume 309, Pages 338–345
DOI: https://doi.org/10.4213/tm4088
(Mi tm4088)
 

From Slavnov–Taylor Identities to the Renormalization of Gauge Theories

Jean Zinn-Justinab

a Institute of Research into the Fundamental Laws of the Universe (IRFU/CEA), Paris-Saclay University, 91191 Gif-sur-Yvette Cedex, France
b French Academy of Sciences, 23 quai de Conti, 75006 Paris, France
References:
Abstract: An important, and highly non-trivial, problem is proving the renormalizability and unitarity of quantized non-Abelian gauge theories. Lee and Zinn-Justin have given the first proof of the renormalizability of non-Abelian gauge theories in the spontaneously broken phase. An essential ingredient in the proof has been the observation, by Slavnov and Taylor, of a non-linear, non-local symmetry of the quantized theory, a direct consequence of Faddeev and Popov's quantization procedure. After the introduction of non-physical fermions to represent the Faddeev–Popov determinant, this symmetry has led to the Becchi–Rouet–Stora–Tyutin fermionic symmetry of the quantized action and, finally, to the resulting Zinn-Justin equation, which makes it possible to solve the renormalization and unitarity problems in their full generality. For an elementary introduction to the discussion of quantum non-Abelian gauge field theories in the spirit of the article, see, for example, L. D. Faddeev, “Faddeev–Popov ghosts,” Scholarpedia 4 (4), 7389 (2009); A. A. Slavnov, “Slavnov–Taylor identities,” Scholarpedia 3 (10), 7119 (2008); C. M. Becchi and C. Imbimbo, “Becchi–Rouet–Stora–Tyutin symmetry,” Scholarpedia 3 (10), 7135 (2008); J. Zinn-Justin, “Zinn-Justin equation,” Scholarpedia 4 (1), 7120 (2009).
Received: October 7, 2019
Revised: October 7, 2019
Accepted: May 15, 2020
English version:
Proceedings of the Steklov Institute of Mathematics, 2020, Volume 309, Pages 317–324
DOI: https://doi.org/10.1134/S0081543820030232
Bibliographic databases:
Document Type: Article
UDC: 517.958:530.145
Language: Russian
Citation: Jean Zinn-Justin, “From Slavnov–Taylor Identities to the Renormalization of Gauge Theories”, Modern problems of mathematical and theoretical physics, Collected papers. On the occasion of the 80th birthday of Academician Andrei Alekseevich Slavnov, Trudy Mat. Inst. Steklova, 309, Steklov Math. Inst. RAS, Moscow, 2020, 338–345; Proc. Steklov Inst. Math., 309 (2020), 317–324
Citation in format AMSBIB
\Bibitem{Zin20}
\by Jean~Zinn-Justin
\paper From Slavnov--Taylor Identities to the Renormalization of Gauge Theories
\inbook Modern problems of mathematical and theoretical physics
\bookinfo Collected papers. On the occasion of the 80th birthday of Academician Andrei Alekseevich Slavnov
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 309
\pages 338--345
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4088}
\crossref{https://doi.org/10.4213/tm4088}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4133462}
\elib{https://elibrary.ru/item.asp?id=45398457}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 309
\pages 317--324
\crossref{https://doi.org/10.1134/S0081543820030232}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000557522500023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089222967}
Linking options:
  • https://www.mathnet.ru/eng/tm4088
  • https://doi.org/10.4213/tm4088
  • https://www.mathnet.ru/eng/tm/v309/p338
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025