Abstract:
We study flag manifold sigma models that admit a zero-curvature representation. We show that these models can be naturally viewed as interacting (holomorphic and antiholomorphic) βγ-systems. In addition, using the theory of nilpotent orbits of complex Lie groups, we establish a relation of flag manifold sigma models to the principal chiral model.
Citation:
Dmitri V. Bykov, “Flag Manifold Sigma Models and Nilpotent Orbits”, Modern problems of mathematical and theoretical physics, Collected papers. On the occasion of the 80th birthday of Academician Andrei Alekseevich Slavnov, Trudy Mat. Inst. Steklova, 309, Steklov Math. Inst. RAS, Moscow, 2020, 89–98; Proc. Steklov Inst. Math., 309 (2020), 78–86
\Bibitem{Byk20}
\by Dmitri~V.~Bykov
\paper Flag Manifold Sigma Models and Nilpotent Orbits
\inbook Modern problems of mathematical and theoretical physics
\bookinfo Collected papers. On the occasion of the 80th birthday of Academician Andrei Alekseevich Slavnov
\serial Trudy Mat. Inst. Steklova
\yr 2020
\vol 309
\pages 89--98
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4081}
\crossref{https://doi.org/10.4213/tm4081}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4133445}
\elib{https://elibrary.ru/item.asp?id=45364390}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2020
\vol 309
\pages 78--86
\crossref{https://doi.org/10.1134/S0081543820030062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000557522500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089235809}
Linking options:
https://www.mathnet.ru/eng/tm4081
https://doi.org/10.4213/tm4081
https://www.mathnet.ru/eng/tm/v309/p89
This publication is cited in the following 12 articles:
Yuki Amari, Toshiaki Fujimori, Muneto Nitta, Keisuke Ohashi, “String junctions in flag manifold sigma models”, Phys. Rev. D, 111:6 (2025)
Toshiaki Fujimori, Muneto Nitta, Keisuke Ohashi, “Moduli spaces of instantons in flag manifold sigma models. Vortices in quiver gauge theories”, J. High Energ. Phys., 2024:2 (2024)
Mikhail Alfimov, Andrey Kurakin, “On bosonic Thirring model in Minkowski signature”, Nuclear Physics B, 998 (2024), 116418
D. V. Bykov, “Sigma models as Gross–Neveu models. II”, Theoret. and Math. Phys., 217:3 (2023), 1842–1854
D. V. Bykov, “Quantum flag manifold σ-models and Hermitian Ricci flow”, Comm. Math. Phys., 401 (2023), 1–32
J. Liniado, B. Vicedo, “Integrable degenerate E-models from 4d Chern–Simons theory”, Ann. Henri Poincaré, 24:10 (2023), 3421
S. Lacroix, “Four-dimensional Chern-Simons theory and integrable field theories”, J. Phys. A-Math. Theor., 55:8 (2022), 083001
I. Affleck, D. Bykov, K. Wamer, “Flag manifold SIGMA models: spin chains and integrable theories”, Phys. Rep.-Rev. Sec. Phys. Lett., 953 (2022), 1–93
D. V. Bykov, “Sigma models as Gross–Neveu models”, Theoret. and Math. Phys., 208:2 (2021), 993–1003
Sylvain Lacroix, Benoît Vicedo, “Integrable E-Models, 4d Chern–Simons Theory and Affine Gaudin Models. I. Lagrangian Aspects”, SIGMA, 17 (2021), 058, 45 pp.
D. Bykov, D. Luest, “Deformed sigma-models, Ricci flow and Toda field theories”, Lett. Math. Phys., 111:6 (2021), 150
V. Caudrelier, M. Stoppato, B. Vicedo, “On the Zakharov-Mikhailov action: 4D Chern-Simons origin and covariant Poisson algebra of the Lax connection”, Lett. Math. Phys., 111:3 (2021), 82