Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Volume 306, Pages 192–209
DOI: https://doi.org/10.4213/tm4002
(Mi tm4002)
 

This article is cited in 6 scientific papers (total in 6 papers)

Existence of a Renormalized Solution to an Anisotropic Parabolic Problem for an Equation with Diffuse Measure

F. Kh. Mukminov

Institute of Mathematics with Computing Centre, Ufa Federal Research Centre of the Russian Academy of Sciences, ul. Chernyshevskogo 112, Ufa, 450008 Russia
Full-text PDF (271 kB) Citations (6)
References:
Abstract: The first initial–boundary value problem is considered for a class of anisotropic parabolic equations with variable nonlinearity exponents and a diffuse measure on the right-hand side in a cylindrical domain $(0,T)\times \Omega $. The domain $\Omega $ is bounded. The existence of a renormalized solution is proved.
Keywords: anisotropic parabolic equation, diffuse measure, renormalized solution, variable nonlinearity exponents, existence of a solution.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00428
This work was supported by the Russian Foundation for Basic Research, project no. 18-01-00428.
Received: September 17, 2018
Revised: October 11, 2018
Accepted: June 11, 2019
English version:
Proceedings of the Steklov Institute of Mathematics, 2019, Volume 306, Pages 178–195
DOI: https://doi.org/10.1134/S008154381905016X
Bibliographic databases:
Document Type: Article
UDC: 517.954+517.956.45+517.958:531.72
Language: Russian
Citation: F. Kh. Mukminov, “Existence of a Renormalized Solution to an Anisotropic Parabolic Problem for an Equation with Diffuse Measure”, Mathematical physics and applications, Collected papers. In commemoration of the 95th anniversary of Academician Vasilii Sergeevich Vladimirov, Trudy Mat. Inst. Steklova, 306, Steklov Math. Inst. RAS, Moscow, 2019, 192–209; Proc. Steklov Inst. Math., 306 (2019), 178–195
Citation in format AMSBIB
\Bibitem{Muk19}
\by F.~Kh.~Mukminov
\paper Existence of a Renormalized Solution to an Anisotropic Parabolic Problem for an Equation with Diffuse Measure
\inbook Mathematical physics and applications
\bookinfo Collected papers. In commemoration of the 95th anniversary of Academician Vasilii Sergeevich Vladimirov
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 306
\pages 192--209
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm4002}
\crossref{https://doi.org/10.4213/tm4002}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4040775}
\elib{https://elibrary.ru/item.asp?id=43228719}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 306
\pages 178--195
\crossref{https://doi.org/10.1134/S008154381905016X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511670100016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85077363513}
Linking options:
  • https://www.mathnet.ru/eng/tm4002
  • https://doi.org/10.4213/tm4002
  • https://www.mathnet.ru/eng/tm/v306/p192
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:325
    Full-text PDF :57
    References:47
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024