Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Volume 305, Pages 250–270
DOI: https://doi.org/10.4213/tm3994
(Mi tm3994)
 

This article is cited in 1 scientific paper (total in 1 paper)

Compactifications of $\mathcal M_{0,n}$ Associated with Alexander Self-Dual Complexes: Chow Rings, $\psi $-Classes, and Intersection Numbers

Ilia I. Nekrasova, Gaiane Yu. Paninabc

a Chebyshev Laboratory at St. Petersburg State University, 14 liniya Vasil'evskogo ostrova 29B, St. Petersburg, 199178 Russia
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, nab. Fontanki 27, St. Petersburg, Russia
c Faculty of Mathematics and Mechanics, St. Petersburg State University, Universitetskii pr. 28, Peterhof, St. Petersburg, 198504 Russia
Full-text PDF (332 kB) Citations (1)
References:
Abstract: An Alexander self-dual complex gives rise to a compactification of $\mathcal M_{0,n}$, called an ASD compactification, which is a smooth algebraic variety. ASD compactifications include (but are not exhausted by) the polygon spaces, or the configuration spaces of flexible polygons. We present an explicit description of the Chow rings of ASD compactifications. We study the analogs of Kontsevich's tautological bundles, compute their Chern classes, compute top intersections of the Chern classes, and derive a recursion for the intersection numbers.
Keywords: Alexander self-dual complex, modular compactification, tautological bundle, Chern class, Chow ring.
Funding agency Grant number
Russian Science Foundation 16-11-10039
This work is supported by the Russian Science Foundation under grant 16-11-10039.
Received: September 19, 2018
Revised: December 14, 2018
Accepted: March 2, 2019
English version:
Proceedings of the Steklov Institute of Mathematics, 2019, Volume 305, Pages 232–250
DOI: https://doi.org/10.1134/S0081543819030131
Bibliographic databases:
Document Type: Article
UDC: 515.165+512.734
Language: Russian
Citation: Ilia I. Nekrasov, Gaiane Yu. Panina, “Compactifications of $\mathcal M_{0,n}$ Associated with Alexander Self-Dual Complexes: Chow Rings, $\psi $-Classes, and Intersection Numbers”, Algebraic topology, combinatorics, and mathematical physics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 305, Steklov Math. Inst. RAS, Moscow, 2019, 250–270; Proc. Steklov Inst. Math., 305 (2019), 232–250
Citation in format AMSBIB
\Bibitem{NekPan19}
\by Ilia~I.~Nekrasov, Gaiane~Yu.~Panina
\paper Compactifications of $\mathcal M_{0,n}$ Associated with Alexander Self-Dual Complexes: Chow Rings, $\psi $-Classes, and Intersection Numbers
\inbook Algebraic topology, combinatorics, and mathematical physics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 75th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 305
\pages 250--270
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3994}
\crossref{https://doi.org/10.4213/tm3994}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017610}
\elib{https://elibrary.ru/item.asp?id=41685763}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 305
\pages 232--250
\crossref{https://doi.org/10.1134/S0081543819030131}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000491421700013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073567417}
Linking options:
  • https://www.mathnet.ru/eng/tm3994
  • https://doi.org/10.4213/tm3994
  • https://www.mathnet.ru/eng/tm/v305/p250
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024