Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Volume 305, Pages 40–60
DOI: https://doi.org/10.4213/tm3988
(Mi tm3988)
 

Universal Formal Group for Elliptic Genus of Level $N$

E. Yu. Bunkova

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: An elliptic function of level $N$ determines an elliptic genus of level $N$ as a Hirzebruch genus. It is known that any elliptic function of level $N$ is a specialization of the Krichever function that determines the Krichever genus. The Krichever function is the exponential of the universal Buchstaber formal group. In this work we give a specialization of the Buchstaber formal group such that this specialization determines formal groups corresponding to elliptic genera of level $N$. Namely, an elliptic function of level $N$ is the exponential of a formal group of the form $F(u,v) =(u^2 A(v) - v^2 A(u))/(u B(v) - v B(u))$, where $A(u),B(u)\in \mathbb C[[u]]$ are power series with complex coefficients such that $A(0)=B(0)=1$, $A''(0)=B'(0)=0$, and for $m = [(N-2)/2]$ and $n = [(N-1)/2]$ there exist parameters $(a_1,\dots ,a_m,b_1,\dots ,b_n)$ for which the relation $\prod _{j=1}^{n-1}(B(u) + b_j u)^2\cdot (B(u) + b_n u)^{N-2n} = A(u)^2 \prod _{k=1}^{m-1}(A(u) + a_k u^2)^2 \cdot (A(u) + a_m u^2)^{N-1-2m}$ holds. For the universal formal group of this form, the exponential is an elliptic function of level at most $N$. This statement is a generalization to the case $N>2$ of the well-known result that the elliptic function of level $2$ determining the elliptic Ochanine–Witten genus is the exponential of a universal formal group of the form $ F(u,v) =(u^2 - v^2)/(u B(v) - v B(u)) $, where $B(u)\in \mathbb C[[u]]$, $B(0)=1$, and $B'(0)=0$. We prove this statement for $N=3,4,5,6$. We also prove that the elliptic function of level $7$ is the exponential of a formal group of this form. Universal formal groups that correspond to elliptic genera of levels $N=5,6,7$ are obtained in this work for the first time.
Keywords: Hirzebruch genus, Krichever genus, elliptic genus of level $N$, formal group, Buchstaber formal group, elliptic function of level $N$, Hirzebruch functional equation, elliptic curve.
Funding agency Grant number
Contest «Young Russian Mathematics»
The work was supported in part by the Young Russian Mathematics award.
Received: September 15, 2018
Revised: December 6, 2018
Accepted: December 20, 2018
English version:
Proceedings of the Steklov Institute of Mathematics, 2019, Volume 305, Pages 33–52
DOI: https://doi.org/10.1134/S0081543819030039
Bibliographic databases:
Document Type: Article
UDC: 512.741+515.178.2+517.583
Language: Russian
Citation: E. Yu. Bunkova, “Universal Formal Group for Elliptic Genus of Level $N$”, Algebraic topology, combinatorics, and mathematical physics, Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 75th birthday, Trudy Mat. Inst. Steklova, 305, Steklov Math. Inst. RAS, Moscow, 2019, 40–60; Proc. Steklov Inst. Math., 305 (2019), 33–52
Citation in format AMSBIB
\Bibitem{Bun19}
\by E.~Yu.~Bunkova
\paper Universal Formal Group for Elliptic Genus of Level~$N$
\inbook Algebraic topology, combinatorics, and mathematical physics
\bookinfo Collected papers. Dedicated to Victor Matveevich Buchstaber, Corresponding Member of the Russian Academy of Sciences, on the occasion of his 75th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 305
\pages 40--60
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3988}
\crossref{https://doi.org/10.4213/tm3988}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3853320}
\elib{https://elibrary.ru/item.asp?id=41683618}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 305
\pages 33--52
\crossref{https://doi.org/10.1134/S0081543819030039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000491421700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073544037}
Linking options:
  • https://www.mathnet.ru/eng/tm3988
  • https://doi.org/10.4213/tm3988
  • https://www.mathnet.ru/eng/tm/v305/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:336
    Full-text PDF :28
    References:28
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024