Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Volume 306, Pages 83–99
DOI: https://doi.org/10.4213/tm3980
(Mi tm3980)
 

This article is cited in 8 scientific papers (total in 8 papers)

Nonstandard Lagrangian Singularities and Asymptotic Eigenfunctions of the Degenerating Operator $-\frac{d}{dx}D(x)\frac{d}{dx}$

S. Yu. Dobrokhotovab, V. E. Nazaikinskiiab

a Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, pr. Vernadskogo 101-1, Moscow, 119526 Russia
b Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141701 Russia
Full-text PDF (433 kB) Citations (8)
References:
Abstract: We express the asymptotic eigenfunctions of the operator $-\frac{d}{dx}D(x)\frac{d}{dx}$ that degenerates at the endpoints of an interval in terms of the modified Maslov canonical operator introduced in our previous studies.
Funding agency Grant number
Russian Science Foundation 16-11-10282
This work is supported by the Russian Science Foundation under grant 16-11-10282.
Received: October 12, 2018
Revised: January 24, 2019
Accepted: May 31, 2019
English version:
Proceedings of the Steklov Institute of Mathematics, 2019, Volume 306, Pages 74–89
DOI: https://doi.org/10.1134/S0081543819050080
Bibliographic databases:
Document Type: Article
UDC: 517.958+517.928.2
Language: Russian
Citation: S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Nonstandard Lagrangian Singularities and Asymptotic Eigenfunctions of the Degenerating Operator $-\frac{d}{dx}D(x)\frac{d}{dx}$”, Mathematical physics and applications, Collected papers. In commemoration of the 95th anniversary of Academician Vasilii Sergeevich Vladimirov, Trudy Mat. Inst. Steklova, 306, Steklov Math. Inst. RAS, Moscow, 2019, 83–99; Proc. Steklov Inst. Math., 306 (2019), 74–89
Citation in format AMSBIB
\Bibitem{DobNaz19}
\by S.~Yu.~Dobrokhotov, V.~E.~Nazaikinskii
\paper Nonstandard Lagrangian Singularities and Asymptotic Eigenfunctions of the Degenerating Operator $-\frac{d}{dx}D(x)\frac{d}{dx}$
\inbook Mathematical physics and applications
\bookinfo Collected papers. In commemoration of the 95th anniversary of Academician Vasilii Sergeevich Vladimirov
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 306
\pages 83--99
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3980}
\crossref{https://doi.org/10.4213/tm3980}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4040767}
\elib{https://elibrary.ru/item.asp?id=43232053}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 306
\pages 74--89
\crossref{https://doi.org/10.1134/S0081543819050080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511670100008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85077368459}
Linking options:
  • https://www.mathnet.ru/eng/tm3980
  • https://doi.org/10.4213/tm3980
  • https://www.mathnet.ru/eng/tm/v306/p83
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:437
    Full-text PDF :55
    References:45
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024