Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Volume 304, Pages 273–284
DOI: https://doi.org/10.4213/tm3972
(Mi tm3972)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Applications of the Hamilton–Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors

N. N. Subbotinaab, N. G. Novoselovaab

a N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620990 Russia
b Ural Federal University named after the First President of Russia B. N. Yeltsin, ul. Mira 19, Yekaterinburg, 620002 Russia
Full-text PDF (207 kB) Citations (1)
References:
Abstract: A chemotherapy model for a malignant tumor is considered, and the optimal control (therapy) problem of minimizing the number of tumor cells at a fixed final instant is investigated. In this problem, the value function is calculated, which assigns the value (the optimal achievable result) to each initial state. An optimal feedback (optimal synthesis) is constructed, using which for any initial state ensures the achievement of the corresponding optimal result. The proposed constructions are based on the method of Cauchy characteristics, the Pontryagin maximum principle, and the theory of generalized (minimax/viscosity) solutions of the Hamilton–Jacobi–Bellman equation describing the value function.
Keywords: optimal control problem, value function, Hamilton–Jacobi–Bellman equation, minimax/viscosity solution, optimal synthesis.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00074
This work was supported by the Russian Foundation for Basic Research, project no. 17-01-00074.
Received: October 10, 2018
Revised: October 25, 2018
Accepted: December 19, 2018
English version:
Proceedings of the Steklov Institute of Mathematics, 2019, Volume 304, Pages 257–267
DOI: https://doi.org/10.1134/S008154381901019X
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: N. N. Subbotina, N. G. Novoselova, “On Applications of the Hamilton–Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors”, Optimal control and differential equations, Collected papers. On the occasion of the 110th anniversary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 304, Steklov Math. Inst. RAS, Moscow, 2019, 273–284; Proc. Steklov Inst. Math., 304 (2019), 257–267
Citation in format AMSBIB
\Bibitem{SubNov19}
\by N.~N.~Subbotina, N.~G.~Novoselova
\paper On Applications of the Hamilton--Jacobi Equations and Optimal Control Theory to Problems of Chemotherapy of Malignant Tumors
\inbook Optimal control and differential equations
\bookinfo Collected papers. On the occasion of the 110th anniversary of the birth of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 304
\pages 273--284
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3972}
\crossref{https://doi.org/10.4213/tm3972}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3951625}
\elib{https://elibrary.ru/item.asp?id=37461013}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 304
\pages 257--267
\crossref{https://doi.org/10.1134/S008154381901019X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470695400018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066808145}
Linking options:
  • https://www.mathnet.ru/eng/tm3972
  • https://doi.org/10.4213/tm3972
  • https://www.mathnet.ru/eng/tm/v304/p273
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:326
    Full-text PDF :33
    References:53
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024