|
Tracking the Solution of a Nonlinear System with Partly Measured Coordinates of the State Vector
V. I. Maksimovab a N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620990 Russia
b Ural Federal University named after the First President of Russia B. N. Yeltsin, ul. Mira 19, Yekaterinburg, 620002 Russia
Abstract:
The problem of tracking a solution of a nonlinear system of ordinary differential equations is considered in the case of inaccurate measurement of some of the phase coordinates. A noise-immune solution algorithm for this system is proposed that is based on a combination of constructs from dynamic inversion and guaranteed control theories. The algorithm consists of two blocks: a block of dynamical reconstruction of unmeasured coordinates and a feedback control block.
Received: June 6, 2018 Revised: June 6, 2018 Accepted: December 7, 2018
Citation:
V. I. Maksimov, “Tracking the Solution of a Nonlinear System with Partly Measured Coordinates of the State Vector”, Optimal control and differential equations, Collected papers. On the occasion of the 110th anniversary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 304, Steklov Math. Inst. RAS, Moscow, 2019, 235–251; Proc. Steklov Inst. Math., 304 (2019), 219–235
Linking options:
https://www.mathnet.ru/eng/tm3969https://doi.org/10.4213/tm3969 https://www.mathnet.ru/eng/tm/v304/p235
|
Statistics & downloads: |
Abstract page: | 272 | Full-text PDF : | 37 | References: | 40 | First page: | 11 |
|