Abstract:
Existence and uniqueness theorems are obtained for a fixed point of a mapping of a complete metric space into itself, that generalize the theorems of L. V. Kantorovich for smooth mappings of Banach spaces. These results are extended to the coincidence points of both ordinary and maultivalued mappings acting in metric spaces.
This work was supported by the Ministry of Education and Science of the Russian Federation (project nos. 1.962.2017/4.6 and 3.8515.2017/BCh) and by the Russian Foundation for Basic Research (project nos. 17-51-12064, 17-41-680975, 18-01-00106, and 19-01-00080).
Citation:
A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points”, Optimal control and differential equations, Collected papers. On the occasion of the 110th anniversary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 304, Steklov Math. Inst. RAS, Moscow, 2019, 68–82; Proc. Steklov Inst. Math., 304 (2019), 60–73
\Bibitem{AruZhuZhu19}
\by A.~V.~Arutyunov, E.~S.~Zhukovskiy, S.~E.~Zhukovskiy
\paper Kantorovich's Fixed Point Theorem in Metric Spaces and Coincidence Points
\inbook Optimal control and differential equations
\bookinfo Collected papers. On the occasion of the 110th anniversary of the birth of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 304
\pages 68--82
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3962}
\crossref{https://doi.org/10.4213/tm3962}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3951612}
\elib{https://elibrary.ru/item.asp?id=37461000}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 304
\pages 60--73
\crossref{https://doi.org/10.1134/S008154381901005X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470695400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066809407}
Linking options:
https://www.mathnet.ru/eng/tm3962
https://doi.org/10.4213/tm3962
https://www.mathnet.ru/eng/tm/v304/p68
This publication is cited in the following 8 articles:
E. S. Zhukovskiy, E. A. Panasenko, “The method of comparison with a model equation in the study of inclusions in vector metric spaces”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S239–S254
E. Zhukovskiy, E. Panasenko, “Extension of the Kantorovich theorem to equations in vector metric spaces: applications to functional differential equations”, Mathematics, 12:1 (2023), 64
A. .V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, Z. T. Zhukovskaya, “Kantorovich's fixed point theorem and coincidence point theorems for mappings in vector metric spaces”, Set-Valued Var. Anal., 30:2 (2022), 397–423
D. Sharma, S. K. Sunanda, S. K. Parhi, “Convergence of Traub's iteration under ω continuity condition in Banach spaces”, Russian Math. (Iz. VUZ), 65:9 (2021), 52–68
A. V. Arutyunov, S. E. Zhukovskiy, “Covering Mappings Acting into Normed Spaces and Coincidence Points”, Proc. Steklov Inst. Math., 315 (2021), 13–18
A. V. Arutyunov, S. E. Zhukovskiy, “On exact penalties for constrained optimization problems in metric spaces”, Eurasian Math. J., 12:4 (2021), 10–20
E. S. Zhukovskiy, “Comparison Method for Studying Equations in Metric Spaces”, Math. Notes, 108:5 (2020), 679–687
A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “On the stability of fixed points and coincidence points of mappings in the generalized Kantorovich's theorem”, Topology Appl., 275 (2020), 107030