Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Volume 304, Pages 32–48
DOI: https://doi.org/10.4213/tm3960
(Mi tm3960)
 

This article is cited in 2 scientific papers (total in 2 papers)

Spectrum of the Second Variation

A. A. Agrachevabc

a Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, 34136 Trieste, Italy
b Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
c Program Systems Institute of Russian Academy of Sciences, Pereslavl-Zalessky, Yaroslavl Region, 152020 Russia
Full-text PDF (264 kB) Citations (2)
References:
Abstract: Second variation of a smooth optimal control problem at a regular extremal is a symmetric Fredholm operator. We study the asymptotics of the spectrum of this operator and give an explicit expression for its determinant in terms of solutions of the Jacobi equation. In the case of the least action principle for the harmonic oscillator, we obtain the classical Euler identity $\prod _{n=1}^\infty (1-x^2/(\pi n)^2)= \sin x/x$. The general case may serve as a rich source of new nice identities.
Funding agency Grant number
Russian Science Foundation 17-11-01387
This work is supported by the Russian Science Foundation under grant 17-11-01387.
Received: September 6, 2018
Revised: October 9, 2018
Accepted: December 19, 2018
English version:
Proceedings of the Steklov Institute of Mathematics, 2019, Volume 304, Pages 26–41
DOI: https://doi.org/10.1134/S0081543819010036
Bibliographic databases:
Document Type: Article
UDC: 517.984.5+517.977
Language: Russian
Citation: A. A. Agrachev, “Spectrum of the Second Variation”, Optimal control and differential equations, Collected papers. On the occasion of the 110th anniversary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 304, Steklov Math. Inst. RAS, Moscow, 2019, 32–48; Proc. Steklov Inst. Math., 304 (2019), 26–41
Citation in format AMSBIB
\Bibitem{Agr19}
\by A.~A.~Agrachev
\paper Spectrum of the Second Variation
\inbook Optimal control and differential equations
\bookinfo Collected papers. On the occasion of the 110th anniversary of the birth of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 304
\pages 32--48
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3960}
\crossref{https://doi.org/10.4213/tm3960}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3951610}
\elib{https://elibrary.ru/item.asp?id=37460998}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 304
\pages 26--41
\crossref{https://doi.org/10.1134/S0081543819010036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470695400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066783511}
Linking options:
  • https://www.mathnet.ru/eng/tm3960
  • https://doi.org/10.4213/tm3960
  • https://www.mathnet.ru/eng/tm/v304/p32
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:289
    Full-text PDF :50
    References:33
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024