Abstract:
Second variation of a smooth optimal control problem at a regular extremal is a symmetric Fredholm operator. We study the asymptotics of the spectrum of this operator and give an explicit expression for its determinant in terms of solutions of the Jacobi equation. In the case of the least action principle for the harmonic oscillator, we obtain the classical Euler identity ∏∞n=1(1−x2/(πn)2)=sinx/x. The general case may serve as a rich source of new nice identities.
Citation:
A. A. Agrachev, “Spectrum of the Second Variation”, Optimal control and differential equations, Collected papers. On the occasion of the 110th anniversary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 304, Steklov Math. Inst. RAS, Moscow, 2019, 32–48; Proc. Steklov Inst. Math., 304 (2019), 26–41
\Bibitem{Agr19}
\by A.~A.~Agrachev
\paper Spectrum of the Second Variation
\inbook Optimal control and differential equations
\bookinfo Collected papers. On the occasion of the 110th anniversary of the birth of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 304
\pages 32--48
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3960}
\crossref{https://doi.org/10.4213/tm3960}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3951610}
\elib{https://elibrary.ru/item.asp?id=37460998}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 304
\pages 26--41
\crossref{https://doi.org/10.1134/S0081543819010036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470695400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066783511}
Linking options:
https://www.mathnet.ru/eng/tm3960
https://doi.org/10.4213/tm3960
https://www.mathnet.ru/eng/tm/v304/p32
This publication is cited in the following 2 articles:
S. Baranzini, “Functional determinants for the second variation”, J. Fixed Point Theory Appl., 26:2 (2024)
S. Baranzini, “Operators arising as second variation of optimal control problems and their spectral asymptotics”, J. Dyn. Control Syst., 29:3 (2023), 659