Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 303, Pages 87–115
DOI: https://doi.org/10.1134/S0371968518040088
(Mi tm3957)
 

This article is cited in 7 scientific papers (total in 7 papers)

Turán–Erőd type converse Markov inequalities on general convex domains of the plane in the boundary Lq norm

P. Yu. Glazyrinaab, Sz. Gy. Révészc

a Institute of Natural Sciences and Mathematics, Ural Federal University named after the First President of Russia B. N. Yeltsin, ul. Kuibysheva 48, Yekaterinburg, 620026 Russia
b N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620990 Russia
c Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13–15, Budapest, 1053 Hungary
Full-text PDF (415 kB) Citations (7)
References:
Abstract: In 1939 P. Turán started to derive lower estimations on the norm of the derivatives of polynomials of (maximum) norm 1 on I:=[1,1] (interval) and D:={zC:|z|1} (disk) under the normalization condition that the zeroes of the polynomial in question all lie in I or D, respectively. For the maximum norm he found that with n:=degp tending to infinity, the precise growth order of the minimal possible derivative norm is n for I and n for D. J. Erőd continued the work of Turán considering other domains. Finally, about a decade ago the growth of the minimal possible -norm of the derivative was proved to be of order n for all compact convex domains. Although Turán himself gave comments about the above oscillation question in Lq norms, till recently results were known only for D and I. Recently, we have found order n lower estimations for several general classes of compact convex domains, and conjectured that even for arbitrary convex domains the growth order of this quantity should be n. Now we prove that in Lq norm the oscillation order is at least n/logn for all compact convex domains.
Keywords: Bernstein–Markov inequalities, Turán's lower estimate of derivative norm, logarithmic derivative, convex domains, Chebyshev constant, transfinite diameter, capacity, minimal width, outer angle.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00336_a
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
National Research, Development and Innovation Fund (Hungary) K-109789
K-119528
German Academic Exchange Service (DAAD) 308015
The first author was supported by the Russian Foundation for Basic Research (project no. 18-01-00336) and by the Russian Academic Excellence Project “5-100” (agreement no. 02.A03.21.0006). The second author was supported by the Hungarian National Research, Development and Innovation Fund (project nos. K-109789 and K-119528) and by the German Academic Exchange Service (project no. 308015).
Received: May 10, 2018
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 303, Pages 78–104
DOI: https://doi.org/10.1134/S0081543818080084
Bibliographic databases:
Document Type: Article
UDC: 517.518.86+514.172
MSC: Primary 41A17; Secondary 30E10, 52A10
Language: Russian
Citation: P. Yu. Glazyrina, Sz. Gy. Révész, “Turán–Erőd type converse Markov inequalities on general convex domains of the plane in the boundary Lq norm”, Harmonic analysis, approximation theory, and number theory, Collected papers. Dedicated to Academician Sergei Vladimirovich Konyagin on the occasion of his 60th birthday, Trudy Mat. Inst. Steklova, 303, MAIK Nauka/Interperiodica, Moscow, 2018, 87–115; Proc. Steklov Inst. Math., 303 (2018), 78–104
Citation in format AMSBIB
\Bibitem{GlaRev18}
\by P.~Yu.~Glazyrina, Sz.~Gy.~R{\'e}v{\'e}sz
\paper Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm
\inbook Harmonic analysis, approximation theory, and number theory
\bookinfo Collected papers. Dedicated to Academician Sergei Vladimirovich Konyagin on the occasion of his 60th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 303
\pages 87--115
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3957}
\crossref{https://doi.org/10.1134/S0371968518040088}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3723998}
\elib{https://elibrary.ru/item.asp?id=37045254}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 303
\pages 78--104
\crossref{https://doi.org/10.1134/S0081543818080084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460475900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062531376}
Linking options:
  • https://www.mathnet.ru/eng/tm3957
  • https://doi.org/10.1134/S0371968518040088
  • https://www.mathnet.ru/eng/tm/v303/p87
  • This publication is cited in the following 7 articles:
    1. Polina Yu. Glazyrina, Yuliya S. Goryacheva, Szilárd Gy. Révész, “The Growth Order of the Optimal Constants in Turán-Erőd Type Inequalities in Lq(K,μ)”, Results Math, 79:7 (2024)  crossref
    2. Alena E. Rokina, “Polynomials least deviating from zero in Lp(1;1), 0p, with a constraint on the location of their roots”, Ural Math. J., 9:2 (2023), 157–164  mathnet  crossref
    3. M. A. Komarov, “O tozhdestve Borveina i vesovykh neravenstvakh tipa Turana na otrezke”, Tr. IMM UrO RAN, 28, no. 1, 2022, 127–138  mathnet  crossref  elib
    4. A. E. Pestovskaya, “Mnogochleny, naimenee uklonyayuschiesya ot nulya, s ogranicheniem na raspolozhenie kornei”, Tr. IMM UrO RAN, 28, no. 3, 2022, 166–175  mathnet  crossref  mathscinet  elib
    5. R. B. Gardner, N. K. Govil, G. V. Milovanović, Th. M. Rassias, “Extremal problems of Markov–Bernstein type in integral norms”, Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomial, 2022, 85–169  crossref
    6. Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomial, 2022, 391–411  crossref
    7. M. A. Komarov, “Reverse Markov inequality on the unit interval for polynomials whose zeros lie in the upper unit half-disk”, Anal. Math., 45:4 (2019), 817–821  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:383
    Full-text PDF :87
    References:69
    First page:10
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025