Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 303, Pages 26–38
DOI: https://doi.org/10.1134/S0371968518040039
(Mi tm3951)
 

This article is cited in 2 scientific papers (total in 2 papers)

On constants in the Jackson–Stechkin theorem in the case of approximation by algebraic polynomials

A. G. Babenkoab, Yu. V. Kryakinc

a N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620990 Russia
b Institute of Natural Sciences and Mathematics, Ural Federal University named after the First President of Russia B. N. Yeltsin, ul. Kuibysheva 48, Yekaterinburg, 620026 Russia
c Institute of Mathematics, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Full-text PDF (216 kB) Citations (2)
References:
Abstract: New estimates are proved for the constants $J(k,\alpha )$ in the classical Jackson–Stechkin inequality $E_{n-1}(f) \le J(k, \alpha ) \omega _k (f,{\alpha \pi }/{n})$, $\alpha >0$, in the case of approximation of functions $f \in C[-1,1]$ by algebraic polynomials. The main result of the paper implies the following two-sided estimates for the constants: $1/2\le J(2k,\alpha )<10$, $n \ge 2k(2k-1)$, $\alpha \ge 2$.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00336_a
Ural Federal University named after the First President of Russia B. N. Yeltsin 02.A03.21.0006
The work of the first author was supported by the Russian Foundation for Basic Research (project no. 18-01-00336a) and by the Ural Federal University within the Russian Academic Excellence Project “5-100” (agreement no. 02.A03.21.0006).
Received: April 1, 2018
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 303, Pages 18–30
DOI: https://doi.org/10.1134/S0081543818080035
Bibliographic databases:
Document Type: Article
UDC: 517.518.82
Language: Russian
Citation: A. G. Babenko, Yu. V. Kryakin, “On constants in the Jackson–Stechkin theorem in the case of approximation by algebraic polynomials”, Harmonic analysis, approximation theory, and number theory, Collected papers. Dedicated to Academician Sergei Vladimirovich Konyagin on the occasion of his 60th birthday, Trudy Mat. Inst. Steklova, 303, MAIK Nauka/Interperiodica, Moscow, 2018, 26–38; Proc. Steklov Inst. Math., 303 (2018), 18–30
Citation in format AMSBIB
\Bibitem{BabKry18}
\by A.~G.~Babenko, Yu.~V.~Kryakin
\paper On constants in the Jackson--Stechkin theorem in the case of approximation by algebraic polynomials
\inbook Harmonic analysis, approximation theory, and number theory
\bookinfo Collected papers. Dedicated to Academician Sergei Vladimirovich Konyagin on the occasion of his 60th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 303
\pages 26--38
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3951}
\crossref{https://doi.org/10.1134/S0371968518040039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3918851}
\elib{https://elibrary.ru/item.asp?id=37045249}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 303
\pages 18--30
\crossref{https://doi.org/10.1134/S0081543818080035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460475900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062544048}
Linking options:
  • https://www.mathnet.ru/eng/tm3951
  • https://doi.org/10.1134/S0371968518040039
  • https://www.mathnet.ru/eng/tm/v303/p26
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:305
    Full-text PDF :49
    References:44
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024