Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2019, Volume 304, Pages 149–158
DOI: https://doi.org/10.4213/tm3948
(Mi tm3948)
 

This article is cited in 1 scientific paper (total in 1 paper)

Hermitian Metric and the Infinite Dihedral Group

B. Goldberg, R. Yang

Department of Mathematics and Statistics, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA
Full-text PDF (215 kB) Citations (1)
References:
Abstract: For a tuple $A=(A_1,A_2,\dots ,A_n)$ of elements in a unital Banach algebra $\mathcal B$, the associated multiparameter pencil is $A(z)=z_1 A_1 + z_2 A_2 + \dots +z_n A_n$. The projective spectrum $P(A)$ is the collection of $z\in \mathbb C^n$ such that $A(z)$ is not invertible. Using the fundamental form $\Omega _A=-\omega _A^*\wedge \omega _A$, where $\omega _A(z) = A^{-1}(z)\,dA(z)$ is the Maurer–Cartan form, R. Douglas and the second author defined and studied a natural Hermitian metric on the resolvent set $P^c(A)=\mathbb{C}^n\setminus P(A)$. This paper examines that metric in the case of the infinite dihedral group, $D_\infty = \langle a,t\mid a^2=t^2 =1\rangle $, with respect to the left regular representation $\lambda $. For the non-homogeneous pencil $R(z) = I+z_1\lambda (a)+z_2\lambda (t)$, we explicitly compute the metric on $P^c(R)$ and show that the completion of $P^c(R)$ under the metric is $\mathbb C^2\setminus \{(\pm 1,0), (0,\pm 1)\}$, which rediscovers the classical spectra $\sigma (\lambda (a))=\sigma (\lambda (t))=\{\pm 1\}$. This paper is a follow-up of the papers by R. G. Douglas and R. Yang (2018) and R. Grigorchuk and R. Yang (2017).
Keywords: projective spectrum, infinite dihedral group, projective resolvent set, left regular representation, Fuglede–Kadison determinant.
Received: May 7, 2018
Revised: September 5, 2018
Accepted: September 6, 2018
English version:
Proceedings of the Steklov Institute of Mathematics, 2019, Volume 304, Pages 136–145
DOI: https://doi.org/10.1134/S0081543819010097
Bibliographic databases:
Document Type: Article
UDC: 517.986+517.984+512.547
Language: Russian
Citation: B. Goldberg, R. Yang, “Hermitian Metric and the Infinite Dihedral Group”, Optimal control and differential equations, Collected papers. On the occasion of the 110th anniversary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 304, Steklov Math. Inst. RAS, Moscow, 2019, 149–158; Proc. Steklov Inst. Math., 304 (2019), 136–145
Citation in format AMSBIB
\Bibitem{GolYan19}
\by B.~Goldberg, R.~Yang
\paper Hermitian Metric and the Infinite Dihedral Group
\inbook Optimal control and differential equations
\bookinfo Collected papers. On the occasion of the 110th anniversary of the birth of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2019
\vol 304
\pages 149--158
\publ Steklov Math. Inst. RAS
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3948}
\crossref{https://doi.org/10.4213/tm3948}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3973318}
\elib{https://elibrary.ru/item.asp?id=37461004}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2019
\vol 304
\pages 136--145
\crossref{https://doi.org/10.1134/S0081543819010097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470695400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067064436}
Linking options:
  • https://www.mathnet.ru/eng/tm3948
  • https://doi.org/10.4213/tm3948
  • https://www.mathnet.ru/eng/tm/v304/p149
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024