Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 303, Pages 59–66
DOI: https://doi.org/10.1134/S0371968518040064
(Mi tm3942)
 

This article is cited in 3 scientific papers (total in 3 papers)

On distribution of elements of subgroups in arithmetic progressions modulo a prime

M. Z. Garaev

Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, México
Full-text PDF (184 kB) Citations (3)
References:
Abstract: Let $\mathbb F_p$ be the field of residue classes modulo a large prime number $p$. We prove that if $\mathcal G$ is a subgroup of the multiplicative group $\mathbb F_p^*$ and if $\mathcal I\subset \mathbb F_p$ is an arithmetic progression, then $|\mathcal G\cap \mathcal I| = (1+o(1))|\mathcal G|\kern 1pt|\mathcal I|/p + R$, where $|R|<\bigl (|\mathcal I|^{1/2}+|\mathcal G|^{1/2}+|\mathcal I|^{1/2}|\mathcal G|^{3/8}p^{-1/8}\bigr )p^{o(1)}$. We use this bound to show that the number of solutions to the congruence $x^n\equiv \lambda \pmod p$, $x\in \mathbb N$, $L<x<L+p/n$, is at most $p^{1/3-1/390+o(1)}$ uniformly over positive integers $n$, $\lambda $ and $L$. The proofs are based on results and arguments of Cilleruelo and the author (2014), Murphy, Rudnev, Shkredov and Shteinikov (2017) and Bourgain, Konyagin, Shparlinski and the author (2013).
Received: December 26, 2017
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 303, Pages 50–57
DOI: https://doi.org/10.1134/S0081543818080060
Bibliographic databases:
Document Type: Article
UDC: 511.34
Language: Russian
Citation: M. Z. Garaev, “On distribution of elements of subgroups in arithmetic progressions modulo a prime”, Harmonic analysis, approximation theory, and number theory, Collected papers. Dedicated to Academician Sergei Vladimirovich Konyagin on the occasion of his 60th birthday, Trudy Mat. Inst. Steklova, 303, MAIK Nauka/Interperiodica, Moscow, 2018, 59–66; Proc. Steklov Inst. Math., 303 (2018), 50–57
Citation in format AMSBIB
\Bibitem{Gar18}
\by M.~Z.~Garaev
\paper On distribution of elements of subgroups in arithmetic progressions modulo a prime
\inbook Harmonic analysis, approximation theory, and number theory
\bookinfo Collected papers. Dedicated to Academician Sergei Vladimirovich Konyagin on the occasion of his 60th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 303
\pages 59--66
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3942}
\crossref{https://doi.org/10.1134/S0371968518040064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3918854}
\elib{https://elibrary.ru/item.asp?id=37045252}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 303
\pages 50--57
\crossref{https://doi.org/10.1134/S0081543818080060}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460475900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058817388}
Linking options:
  • https://www.mathnet.ru/eng/tm3942
  • https://doi.org/10.1134/S0371968518040064
  • https://www.mathnet.ru/eng/tm/v303/p59
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024