Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 302, Pages 234–267
DOI: https://doi.org/10.1134/S0371968518030111
(Mi tm3937)
 

This article is cited in 2 scientific papers (total in 3 papers)

$L_\infty $-locality of three-dimensional Peano curves

A. A. Korneev, E. V. Shchepin

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (370 kB) Citations (3)
References:
Abstract: A theory and corresponding algorithms are developed for fast and accurate evaluation of the $L_\infty $-locality (i.e., the maximum cube-to-line ratio in the maximum metric) for polyfractal three-dimensional Peano curves.
Keywords: maximum metric, three-dimensional Peano curves, polyfractal curves, dyadic curves, cubically decomposable curves, cube-to-linear ratio.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations 26
This work was supported by the Presidium of the Russian Academy of Sciences within program no. 26 “Fundamental bases of the development of algorithms and software for prospective and high-performance computing systems” (project “Multidimensional Fractal Peano Curves”).
Received: March 15, 2018
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 302, Pages 217–249
DOI: https://doi.org/10.1134/S0081543818060111
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: A. A. Korneev, E. V. Shchepin, “$L_\infty $-locality of three-dimensional Peano curves”, Topology and physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 302, MAIK Nauka/Interperiodica, Moscow, 2018, 234–267; Proc. Steklov Inst. Math., 302 (2018), 217–249
Citation in format AMSBIB
\Bibitem{KorShc18}
\by A.~A.~Korneev, E.~V.~Shchepin
\paper $L_\infty $-locality of three-dimensional Peano curves
\inbook Topology and physics
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 302
\pages 234--267
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3937}
\crossref{https://doi.org/10.1134/S0371968518030111}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3894647}
\elib{https://elibrary.ru/item.asp?id=36503443}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 302
\pages 217--249
\crossref{https://doi.org/10.1134/S0081543818060111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454896300011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059532426}
Linking options:
  • https://www.mathnet.ru/eng/tm3937
  • https://doi.org/10.1134/S0371968518030111
  • https://www.mathnet.ru/eng/tm/v302/p234
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :38
    References:36
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024