Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 302, Pages 41–56
DOI: https://doi.org/10.1134/S0371968518030032
(Mi tm3928)
 

This article is cited in 3 scientific papers (total in 3 papers)

Hirzebruch functional equation: classification of solutions

Elena Yu. Bunkova

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Full-text PDF (266 kB) Citations (3)
References:
Abstract: The Hirzebruch functional equation is $\sum _{i=1}^n\prod _{j\ne i} (1/f(z_j-z_i))=c$ with constant $c$ and initial conditions $f(0)=0$ and $f'(0)=1$. In this paper we find all solutions of the Hirzebruch functional equation for $n\leq 6$ in the class of meromorphic functions and in the class of series. Previously, such results have been known only for $n\leq 4$. The Todd function is the function determining the two-parameter Todd genus (i.e., the $\chi _{a,b}$-genus). It gives a solution to the Hirzebruch functional equation for any $n$. The elliptic function of level $N$ is the function determining the elliptic genus of level $N$. It gives a solution to the Hirzebruch functional equation for $n$ divisible by $N$. A series corresponding to a meromorphic function $f$ with parameters in $U\subset \mathbb C^k$ is a series with parameters in the Zariski closure of $U$ in $\mathbb C^k$, such that for the parameters in $U$ it coincides with the series expansion at zero of $f$. The main results are as follows: (1) Any series solution of the Hirzebruch functional equation for $n=5$ corresponds either to the Todd function or to the elliptic function of level $5$. (2) Any series solution of the Hirzebruch functional equation for $n=6$ corresponds either to the Todd function or to the elliptic function of level $2$, $3$, or $6$. This gives a complete classification of complex genera that are fiber multiplicative with respect to $\mathbb C\mathrm P^{n-1}$ for $n\leq 6$. A topological application of this study is an effective calculation of the coefficients of elliptic genera of level $N$ for $N=2,\dots ,6$ in terms of solutions of a differential equation with parameters in an irreducible algebraic variety in $\mathbb C^4$.
Keywords: Hirzebruch functional equation, Hirzebruch genus, Krichever genus, two-parameter Todd genus, elliptic genus of level $n$, elliptic function of level $n$, Baker–Akhiezer function, doubly periodic functions, elliptic curve.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: March 10, 2018
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 302, Pages 33–47
DOI: https://doi.org/10.1134/S0081543818060032
Bibliographic databases:
Document Type: Article
UDC: 515.178.2+517.547.58+517.583+517.965
Language: Russian
Citation: Elena Yu. Bunkova, “Hirzebruch functional equation: classification of solutions”, Topology and physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 302, MAIK Nauka/Interperiodica, Moscow, 2018, 41–56; Proc. Steklov Inst. Math., 302 (2018), 33–47
Citation in format AMSBIB
\Bibitem{Bun18}
\by Elena~Yu.~Bunkova
\paper Hirzebruch functional equation: classification of solutions
\inbook Topology and physics
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 302
\pages 41--56
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3928}
\crossref{https://doi.org/10.1134/S0371968518030032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3894639}
\elib{https://elibrary.ru/item.asp?id=36503434}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 302
\pages 33--47
\crossref{https://doi.org/10.1134/S0081543818060032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454896300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059467547}
Linking options:
  • https://www.mathnet.ru/eng/tm3928
  • https://doi.org/10.1134/S0371968518030032
  • https://www.mathnet.ru/eng/tm/v302/p41
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:314
    Full-text PDF :57
    References:41
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024