Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 302, Pages 214–233
DOI: https://doi.org/10.1134/S037196851803010X
(Mi tm3926)
 

This article is cited in 3 scientific papers (total in 3 papers)

Integrable 3D statistical models on six-valent graphs

I. G. Korepanova, D. V. Talalaevbc, G. I. Sharyginbc

a Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, Moscow, 125993 Russia
b Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", Bol'shaya Cheremushkinskaya ul. 25, Moscow, 117218 Russia
c Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia
Full-text PDF (313 kB) Citations (3)
References:
Abstract: The paper is devoted to the study of a special statistical model on graphs with vertices of degrees $6$ and $1$. We show that this model is invariant with respect to certain Roseman moves if one regards the graph as the singular point set of the diagram of a $2$-knot. Our approach is based on the properties of the tetrahedron cohomology complex.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00398
18-01-00461
The work of the second and third authors was partially supported by the Russian Foundation for Basic Research (project nos. 18-01-00461 and 18-01-00398, respectively).
Received: March 11, 2018
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 302, Pages 198–216
DOI: https://doi.org/10.1134/S008154381806010X
Bibliographic databases:
Document Type: Article
UDC: 512.667.7+515.162.8+519.177
Language: Russian
Citation: I. G. Korepanov, D. V. Talalaev, G. I. Sharygin, “Integrable 3D statistical models on six-valent graphs”, Topology and physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 302, MAIK Nauka/Interperiodica, Moscow, 2018, 214–233; Proc. Steklov Inst. Math., 302 (2018), 198–216
Citation in format AMSBIB
\Bibitem{KorTalSha18}
\by I.~G.~Korepanov, D.~V.~Talalaev, G.~I.~Sharygin
\paper Integrable 3D statistical models on six-valent graphs
\inbook Topology and physics
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 302
\pages 214--233
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3926}
\crossref{https://doi.org/10.1134/S037196851803010X}
\elib{https://elibrary.ru/item.asp?id=36503442}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 302
\pages 198--216
\crossref{https://doi.org/10.1134/S008154381806010X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454896300010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059520807}
Linking options:
  • https://www.mathnet.ru/eng/tm3926
  • https://doi.org/10.1134/S037196851803010X
  • https://www.mathnet.ru/eng/tm/v302/p214
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:281
    Full-text PDF :56
    References:46
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024