Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 302, Pages 377–399
DOI: https://doi.org/10.1134/S0371968518030196
(Mi tm3925)
 

Quasitoric totally normally split manifolds

Grigory D. Solomadin

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: A smooth stably complex manifold is called a totally tangentially/normally split manifold (TTS/TNS manifold for short) if the respective complex tangential/normal vector bundle is stably isomorphic to a Whitney sum of complex line bundles, respectively. In this paper we construct manifolds $M$ such that any complex vector bundle over $M$ is stably equivalent to a Whitney sum of complex line bundles. A quasitoric manifold shares this property if and only if it is a TNS manifold. We establish a new criterion for a quasitoric manifold $M$ to be TNS via non-semidefiniteness of certain higher degree forms in the respective cohomology ring of $M$. In the family of quasitoric manifolds, this generalizes the theorem of J. Lannes about the signature of a simply connected stably complex TNS $4$-manifold. We apply our criterion to show the flag property of the moment polytope for a nonsingular toric projective TNS manifold of complex dimension $3$.
Funding agency Grant number
Russian Science Foundation 14-11-00414
This work is supported by the Russian Science Foundation under grant 14-11-00414.
Received: March 12, 2018
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 302, Pages 358–379
DOI: https://doi.org/10.1134/S0081543818060196
Bibliographic databases:
Document Type: Article
UDC: 515.145+515.165
Language: Russian
Citation: Grigory D. Solomadin, “Quasitoric totally normally split manifolds”, Topology and physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 302, MAIK Nauka/Interperiodica, Moscow, 2018, 377–399; Proc. Steklov Inst. Math., 302 (2018), 358–379
Citation in format AMSBIB
\Bibitem{Sol18}
\by Grigory~D.~Solomadin
\paper Quasitoric totally normally split manifolds
\inbook Topology and physics
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 302
\pages 377--399
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3925}
\crossref{https://doi.org/10.1134/S0371968518030196}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3894655}
\elib{https://elibrary.ru/item.asp?id=36503452}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 302
\pages 358--379
\crossref{https://doi.org/10.1134/S0081543818060196}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454896300019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059447229}
Linking options:
  • https://www.mathnet.ru/eng/tm3925
  • https://doi.org/10.1134/S0371968518030196
  • https://www.mathnet.ru/eng/tm/v302/p377
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:199
    Full-text PDF :34
    References:30
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024