Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 302, Pages 7–22
DOI: https://doi.org/10.1134/S0371968518030019
(Mi tm3924)
 

This article is cited in 9 scientific papers (total in 9 papers)

Real soliton lattices of the Kadomtsev–Petviashvili II equation and desingularization of spectral curves: the GrTP(2,4)GrTP(2,4) case

Simonetta Abendaa, Petr G. Grinevichbc

a Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna (BO), Italy
b L.D. Landau Institute for Theoretical Physics of Russian Academy of Sciences, pr. Ak. Semenova 1a, Chernogolovka, Moscow oblast, 142432 Russia
c Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia
Full-text PDF (956 kB) Citations (9)
References:
Abstract: We apply the general construction developed in our previous papers to the first nontrivial case of GrTP(2,4)GrTP(2,4). In particular, we construct finite-gap real quasi-periodic solutions of the KP-II equation in the form of a soliton lattice corresponding to a smooth M-curve of genus 4 which is a desingularization of a reducible rational M-curve for soliton data in GrTP(2,4).
Funding agency Grant number
Istituto Nazionale di Alta Matematica "Francesco Severi"
Russian Academy of Sciences - Federal Agency for Scientific Organizations 0033-2018-0009
Russian Foundation for Basic Research 17-01-00366-а
This research was partially supported by the GNFM-INdAM and RFO University of Bologna. The research of the second author was performed in part within the framework of the state assignment of FASO Russia (theme “Mathematical physics,” no. 0033-2018-0009) and was supported in part by the Russian Foundation for Basic Research (project no. 17-01-00366-a).
Received: April 23, 2018
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 302, Pages 1–15
DOI: https://doi.org/10.1134/S0081543818060019
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: Simonetta Abenda, Petr G. Grinevich, “Real soliton lattices of the Kadomtsev–Petviashvili II equation and desingularization of spectral curves: the GrTP(2,4) case”, Topology and physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 302, MAIK Nauka/Interperiodica, Moscow, 2018, 7–22; Proc. Steklov Inst. Math., 302 (2018), 1–15
Citation in format AMSBIB
\Bibitem{AbeGri18}
\by Simonetta~Abenda, Petr~G.~Grinevich
\paper Real soliton lattices of the Kadomtsev--Petviashvili II equation and desingularization of spectral curves: the $\mathrm {Gr^{ \scriptscriptstyle TP}}(2,4)$ case
\inbook Topology and physics
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 302
\pages 7--22
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3924}
\crossref{https://doi.org/10.1134/S0371968518030019}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3894637}
\elib{https://elibrary.ru/item.asp?id=36503429}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 302
\pages 1--15
\crossref{https://doi.org/10.1134/S0081543818060019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454896300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059522279}
Linking options:
  • https://www.mathnet.ru/eng/tm3924
  • https://doi.org/10.1134/S0371968518030019
  • https://www.mathnet.ru/eng/tm/v302/p7
  • This publication is cited in the following 9 articles:
    1. Gino Biondini, Alexander J Bivolcic, Mark A Hoefer, Antonio Moro, “Two-dimensional reductions of the Whitham modulation system for the Kadomtsev–Petviashvili equation”, Nonlinearity, 37:2 (2024), 025012  crossref
    2. Atsushi Nakayashiki, “Vertex operators of the KP hierarchy and singular algebraic curves”, Lett Math Phys, 114:3 (2024)  crossref
    3. P. G. Grinevich, S. Abenda, “Geometric nature of relations on plabic graphs and totally non-negative Grassmannians”, Int. Math. Res. Not. IMRN, 2023:14 (2023), 11986–12051  mathnet  crossref  mathscinet
    4. P. G. Grinevich, S. Abenda, “Real regular KP divisors on 𝙼-curves and totally non-negative Grassmannians”, Lett. Math. Phys., 112 (2022), 115–64  mathnet  crossref  scopus
    5. P. G. Grinevich, S. Abenda, “Edge vectors on plabic networks in the disk and amalgamation of totally non-negative Grassmannians”, Adv. Math., 406 (2022), 108523–57  mathnet  crossref  mathscinet  scopus
    6. S. Abenda, “Kasteleyn theorem, geometric signatures and kp-ii divisors on planar bipartite networks in the disk”, Math. Phys. Anal. Geom., 24:4 (2021), 35  crossref  mathscinet  isi
    7. D. Wu, “The direct scattering problem for perturbed Kadomtsev-Petviashvili multi line solitons”, J. Math. Phys., 62:9 (2021), 091513  crossref  mathscinet  isi
    8. Atsushi Nakayashiki, “On Reducible Degeneration of Hyperelliptic Curves and Soliton Solutions”, SIGMA, 15 (2019), 009, 18 pp.  mathnet  crossref
    9. S. Abenda, P. G. Grinevich, “Reducible m-curves for le-networks in the totally-nonnegative grassmannian and kp-ii multiline solitons”, Sel. Math.-New Ser., 25:3 (2019), UNSP 43  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :59
    References:50
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025