Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 302, Pages 354–376
DOI: https://doi.org/10.1134/S0371968518030184
(Mi tm3923)
 

This article is cited in 22 scientific papers (total in 23 papers)

Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields

V. P. Platonov, M. M. Petrunin

Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Nakhimovskii pr. 36, korp. 1, Moscow, 117218 Russia
References:
Abstract: We construct a theory of periodic and quasiperiodic functional continued fractions in the field $k((h))$ for a linear polynomial $h$ and in hyperelliptic fields. In addition, we establish a relationship between continued fractions in hyperelliptic fields, torsion in the Jacobians of the corresponding hyperelliptic curves, and $S$-units for appropriate sets $S$. We prove the periodicity of quasiperiodic elements of the form $\sqrt f/dh^s$, where $s$ is an integer, the polynomial $f$ defines a hyperelliptic field, and the polynomial $d$ is a divisor of $f$; such elements are important from the viewpoint of the torsion and periodicity problems. In particular, we show that the quasiperiodic element $\sqrt f$ is periodic. We also analyze the continued fraction expansion of the key element $\sqrt f/h^{g+1}$, which defines the set of quasiperiodic elements of a hyperelliptic field.
Funding agency Grant number
Russian Science Foundation 16-11-10111
This work is supported by the Russian Science Foundation under grant 16-11-10111.
Received: April 10, 2018
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 302, Pages 336–357
DOI: https://doi.org/10.1134/S0081543818060184
Bibliographic databases:
Document Type: Article
UDC: 511.6
Language: Russian
Citation: V. P. Platonov, M. M. Petrunin, “Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields”, Topology and physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 302, MAIK Nauka/Interperiodica, Moscow, 2018, 354–376; Proc. Steklov Inst. Math., 302 (2018), 336–357
Citation in format AMSBIB
\Bibitem{PlaPet18}
\by V.~P.~Platonov, M.~M.~Petrunin
\paper Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields
\inbook Topology and physics
\bookinfo Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 302
\pages 354--376
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3923}
\crossref{https://doi.org/10.1134/S0371968518030184}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3894654}
\elib{https://elibrary.ru/item.asp?id=36503451}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 302
\pages 336--357
\crossref{https://doi.org/10.1134/S0081543818060184}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454896300018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059460834}
Linking options:
  • https://www.mathnet.ru/eng/tm3923
  • https://doi.org/10.1134/S0371968518030184
  • https://www.mathnet.ru/eng/tm/v302/p354
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :53
    References:26
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024