Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 301, Pages 276–286
DOI: https://doi.org/10.1134/S0371968518020206
(Mi tm3917)
 

This article is cited in 7 scientific papers (total in 7 papers)

Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional

A. S. Trushechkinabc

a Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
b National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow, 115409 Russia
c National University of Science and Technology MISIS, Leninskii pr. 4, Moscow, 119049 Russia
Full-text PDF (214 kB) Citations (7)
References:
Abstract: A necessary and sufficient condition is derived for a density operator to be a stationary solution for a certain class of Lindblad equations in the theory of open quantum systems. This condition is based on the properties of a functional that in some cases corresponds to entropy production. Examples are given where this condition is used to find stationary solutions.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation МК-2815.2017.1
This work was supported by a grant of the President of the Russian Federation, project no. MK-2815.2017.1.
Received: November 8, 2017
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 301, Pages 262–271
DOI: https://doi.org/10.1134/S008154381804020X
Bibliographic databases:
Document Type: Article
UDC: 517.958:530.145.6
Language: Russian
Citation: A. S. Trushechkin, “Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional”, Complex analysis, mathematical physics, and applications, Collected papers, Trudy Mat. Inst. Steklova, 301, MAIK Nauka/Interperiodica, Moscow, 2018, 276–286; Proc. Steklov Inst. Math., 301 (2018), 262–271
Citation in format AMSBIB
\Bibitem{Tru18}
\by A.~S.~Trushechkin
\paper Finding stationary solutions of the Lindblad equation by analyzing the entropy production functional
\inbook Complex analysis, mathematical physics, and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 301
\pages 276--286
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3917}
\crossref{https://doi.org/10.1134/S0371968518020206}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3841674}
\elib{https://elibrary.ru/item.asp?id=35246368}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 301
\pages 262--271
\crossref{https://doi.org/10.1134/S008154381804020X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000442104600020}
\elib{https://elibrary.ru/item.asp?id=35726689}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051653405}
Linking options:
  • https://www.mathnet.ru/eng/tm3917
  • https://doi.org/10.1134/S0371968518020206
  • https://www.mathnet.ru/eng/tm/v301/p276
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:360
    Full-text PDF :216
    References:56
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024