Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Volume 301, Pages 209–218
DOI: https://doi.org/10.1134/S0371968518020152
(Mi tm3909)
 

This article is cited in 2 scientific papers (total in 2 papers)

Feynman–Chernoff iterations and their applications in quantum dynamics

Yu. N. Orlova, V. Zh. Sakbaevb

a Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia
b Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi, Moscow oblast, 141701 Russia
Full-text PDF (212 kB) Citations (2)
References:
Abstract: The notion of Chernoff equivalence for operator-valued functions is generalized to the solutions of quantum evolution equations with respect to the density matrix. A semigroup is constructed that is Chernoff equivalent to the operator function arising as the mean value of random semigroups. As applied to the problems of quantum optics, an operator is constructed that is Chernoff equivalent to a translation operator generating coherent states.
Keywords: Feynman formulas, Chernoff equivalence, averaging of quantum semigroups, Liouville equation, coherent states.
Funding agency Grant number
Russian Science Foundation 14-21-00025
This work is supported by the Russian Science Foundation under grant 14-21-00025.
Received: October 31, 2017
English version:
Proceedings of the Steklov Institute of Mathematics, 2018, Volume 301, Pages 197–206
DOI: https://doi.org/10.1134/S0081543818040156
Bibliographic databases:
Document Type: Article
UDC: 517.983.6
Language: Russian
Citation: Yu. N. Orlov, V. Zh. Sakbaev, “Feynman–Chernoff iterations and their applications in quantum dynamics”, Complex analysis, mathematical physics, and applications, Collected papers, Trudy Mat. Inst. Steklova, 301, MAIK Nauka/Interperiodica, Moscow, 2018, 209–218; Proc. Steklov Inst. Math., 301 (2018), 197–206
Citation in format AMSBIB
\Bibitem{OrlSak18}
\by Yu.~N.~Orlov, V.~Zh.~Sakbaev
\paper Feynman--Chernoff iterations and their applications in quantum dynamics
\inbook Complex analysis, mathematical physics, and applications
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2018
\vol 301
\pages 209--218
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3909}
\crossref{https://doi.org/10.1134/S0371968518020152}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3841669}
\elib{https://elibrary.ru/item.asp?id=35246346}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2018
\vol 301
\pages 197--206
\crossref{https://doi.org/10.1134/S0081543818040156}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000442104600015}
\elib{https://elibrary.ru/item.asp?id=35737116}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051672143}
Linking options:
  • https://www.mathnet.ru/eng/tm3909
  • https://doi.org/10.1134/S0371968518020152
  • https://www.mathnet.ru/eng/tm/v301/p209
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :66
    References:28
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024